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Motivated by an experiment on a superconducting quantum processor [X. Mi et al., Science 378, 785
(2022).], we study level pairings in the many-body spectrum of the random-field Floquet quantum Ising
model. The pairings derive fromMajorana zero and π modes when writing the spin model in Jordan-Wigner
fermions. Both splittings have log-normal distributions with random transverse fields. In contrast, random
longitudinal fields affect the zero and π splittings in drastically different ways. While zero pairings are
rapidly lifted, the π pairings are remarkably robust, or even strengthened, up to vastly larger disorder
strengths. We explain our results within a self-consistent Floquet perturbation theory and study implications
for boundary spin correlations. The robustness of π pairings against longitudinal disorder may be useful for
quantum information processing.
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Introduction.—The quantum Ising model [1] appears at
the crossroads of many current developments in condensed
matter physics and quantum information. It is paradigmatic
for symmetry breaking quantum phase transitions in its spin
incarnation [2,3], for topological quantum phase transitions
in its fermionized version [4], and for lattice gauge theory as
well as topological quantum error correcting codes in its
dualized form [5,6]. The Floquet version of the quantum
Ising model has been central to studies of topology in driven
systems [7–10], time crystals [11,12], many-body localiza-
tion [11,13], and, in its fermionized form, Majorana π
modes [14]. A recent experiment on a superconducting
quantum processor [15] reveals that temporal spin correla-
tions of the one-dimensional Floquet quantum Ising model
can be remarkably robust against certain types of disorder.
In one dimension and in the absence of disorder, the

Floquet quantum Ising model is defined through the Floquet
operator

UF;0 ¼ e
iπg
2

P
N
j¼1

Xje
iπJ
2

P
N−1
j¼1

ZjZjþ1 ; ð1Þ

which describes the stroboscopic time evolution of an initial
state jψð0Þi of N qubits through jψðtÞi ¼ ðUF;0Þtjψð0Þi
with t∈N. The Floquet operator UF;0 can be implemented
on a superconducting quantum processor through a set of
single- and two-qubit gates. The two-qubit gates effect the
Ising exchange coupling involving the Pauli-Z operators of
the qubits, while the single-qubit gates realize the transverse
field in terms of the Pauli-X operators. The model exhibits
four topologically distinct phases as a function of the
transverse field g and the exchange coupling J [16–19].
This can be seen by diagonalizing UF;0 by a Jordan-Wigner
mapping to the Floquet Kitaev chain, a free-fermion model.

For periodic boundary conditions, the single-particle eigen-
states of the associated Bogoliubov-de Gennes Floquet
operator can be labeled by momentum. The corresponding
spectrum of eigenphases ϵ∈ ½−π; π� is shown in Fig. 1(a).
One finds two gaps, one around ϵ ¼ 0 and another around
ϵ ¼ �π, which can both be trivial or topological. This
results in the four possible phases displayed in the phase
diagram in Fig. 1(b) [16,17].
In an open chain, the two types of topological gaps are

signaled by a pair of Majorana zero modes (MZMs) or
Majorana π modes (MPMs), respectively [14]. These modes
appear in the middle of the corresponding gap and exhibit a
hybridization splitting away from ϵ ¼ 0 (MZMs) or ϵ ¼ �π
(MPMs) by an amount which is exponentially small in the
length N of the chain, see Fig. 1(c). In the presence of the
Majorana modes, the corresponding many-body Floquet
eigenstates of UF;0 have eigenphases that come in pairs.
Apart from hybridization splittings, the paired eigenphases
are degenerate (MZMs) or shifted relative to each other by π
(MPMs), see Fig. 1(d). This is a particular instance of the
wider phenomenon of strong modes in interacting and
kicked spin models [20–24].
The Floquet quantum Ising model and its fermionized

version can be implemented in a variety of platforms
including cold atomic gases [14], wide Josephson junc-
tions [25], and quantum wires [16,17,26]. Motivated by the
recent implementation on a superconducting quantum
information processor [15], we study the effects of
quenched random fields on the MZM and MPM-induced
pairings of eigenphases as well as the ramifications for
temporal spin-spin correlation functions. This is of con-
siderable interest for two reasons. First, inaccuracies in
implementing the gate operations naturally introduce a
certain degree of randomness, making robustness against
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disorder an important issue in experiment and applica-
tions. Second, in the context of studying strong modes,
disorder raises important theoretical questions, especially
because a random longitudinal field involving the Pauli-Z
operators breaks the protecting spin-flip symmetry of the
clean quantum Ising model. Remarkably, we find that
longitudinal disorder can even strengthen the spectral π
pairing, a result which extends beyond the robustness
observed in experiment [15]. We uncover dramatic
differences between MZMs and MPMs, which may make
the latter particularly interesting in the context of quantum
information processing.
Random transverse field.—We begin by studying ran-

dom transverse fields and consider the Floquet operator
UF ¼ UgUF;0 with Ug ¼ expfðiπ=2ÞPN

j¼1 gjXjg. The
random fields gj are drawn from independent box dis-
tributions, gj ∈ ½−dg; dg�. Unlike in related models of
Floquet time crystals [11,12,27–33], we consider a fixed
J. Given that Ug describes a field that is random in space
but independent of time t, the disordered model remains
Floquet and is characterized by a many-body spectrum of
2N eigenphases En on the unit circle, UFjni ¼ e−iEn jni.
In the presence of the random transverse field, one can

still find a set of N fermionic Bogoliubov operators γα
satisfying [15,16,34] (as reviewed in the Supplemental
Material [19])

U†
FγαUF ¼ e−iϵαγα: ð2Þ

This can, e.g., be done by expressing the spins in Jordan-
Wigner fermions and a subsequent Bogoliubov transforma-
tion. Then, the 2N many-body eigenphases En ¼

P
α nαϵα

of UF can be decomposed into the N single-particle

eigenphases ϵα. Here, the nα ∈ f0; 1g denote occupations
γ†αγα of the Bogoliubov fermions. Both En and ϵα are
defined modulo 2π. The above-mentioned zero (π) pairing
of many-body states follows from the existence of a pair of
MZMs (MPMs), which combine into a Bogoliubov fermion
γ0 (γπ). The corresponding eigenphase ϵ0 (ϵπ) differs from
zero (π) by an amount δ0 (δπ) that is exponentially small in
the length of the chain. This leads to deviations from the
perfect zero (π) pairing of many-body states by δ0 (δπ),
which are identical for all pairs of the many-body spectrum.
Random transverse fields induce a broad distribution of

the splittings δ0 and δπ across the disorder ensemble,
which we find to be log-normal. Just as for the splittings in
the clean model [see Fig. 1(c)], we find that the log-normal
distribution for δ0 at g is identical to the distribution of δπ
at g → 1 − g. This is illustrated in Figs. 2(a) and 2(b),
which show the average and variance of ln δ0;π as a
function of N for corresponding locations in the MZM
and MPM phases. The linear dependence on N reflects the
exponential dependence of the hybridization splitting. The
Supplemental Material [19] gives analytical expressions
drawing on the related Hamiltonian problem [35].
Random longitudinal field.—We now turn to the case

of a random longitudinal field as described by the Floquet
operatorUF¼UhUF;0, whereUh¼ expfðiπ=2ÞPN

j¼1hjZjg
and the random fields hj are drawn from independent box
distributions, hj ∈ ½−dh; dh�. Longitudinal fields differ fun-
damentally from transverse fields in two ways. First,
longitudinal fields do not conserve the spin-flip symmetry
P ¼ Q

j Xj of UF;0, which maps to conservation of fermion

parity P ¼ Q
αð1 − 2γ†αγαÞ in the Floquet Kitaev chain. As a

result, longitudinal fields directly couple the two many-body
states within a pair. Second, the fermionic representations of

(a) (b)

(d)

(c) (e)

(f)

FIG. 1. Clean quantum Ising chain. (a) Single-particle Floquet spectrum of a periodic chain vs wave vector k for various transverse
fields g. (b) Phase diagram with phases labeled by the Majorana modes present in the corresponding Kitaev chain. (c) Hybridization
splitting δ0;π vs g of Majorana modes in finite chains of various lengths N (J ¼ 0.5), showing the symmetry between MZM and MPM
phases. (d) Sketch of the pairing of many-body eigenphases in the MZM and MPM phases. Both pairings coexist in the MZM &MPM
phase. (e),(f) Spin-spin correlation function GðtÞ for (e) long [note the factor ð−1Þt for the MPM phase] and (f) short times. For long
times, GðtÞ oscillates with period 2π=δ0;π , superimposed on rapid period-two oscillations in the MPM phase. Parameters: (a) J ¼ 0.5,
(e),(f) N ¼ 8, ðg; JÞ ¼ ð0.2; 0.5Þ (MZM), ðg; JÞ ¼ ð0.8; 0.5Þ (MPM).
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the Pauli-Z operators involve string operators, turning the
Floquet quantum Ising model with longitudinal disorder into
an interacting fermion problem.
Our numerics show that in stark contrast to transverse

fields, random longitudinal fields affect the zero and π
splittings in dramatically different ways. In the MZM phase,
even tiny random longitudinal fields of the order of δ0
enhance the splittings as shown in Fig. 2(c). We also find
that the splittings remain approximately uniform across the
many-body spectrum. In contrast, in the MPM phase,
random longitudinal fields of order δπ have essentially no
effect. Even fields approaching order unity barely enlarge
the splittings δπ . The splittings are strictly reduced when g is
sufficiently close to unity [Fig. 2(d)] and remain concen-
trated around zero when g is further from unity [Fig. 2(e)].
The splittings vary across the many-body spectrum and are
self-averaging [19].
The remarkable robustness of MPMs against a random

longitudinal field (as well as the sensitivity of MZMs) can
be understood within a low-order stroboscopic Floquet
perturbation theory for UF ¼ e−iVUF;0. Expanding the
eigenphases of UF to quadratic order in V, we find
En ¼ En;0 þ En;1 þ En;2 þ � � �, with [19]

En;1 ¼ hn0jVjn0i; En;2 ¼
X
m≠n

jhn0jVjm0ij2
2 tanEn;0−Em;0

2

: ð3Þ

Here, we assume nondegenerate eigenstates jn0i of UF;0

with eigenphases En;0. For degenerate eigenstates, one first
diagonalizes V within the degenerate subspace. Im-
portantly, coupling to a close-by level with small eigen-
phase difference δ0 gives a small denominator in En;2. In
contrast, coupling to a level with eigenphase difference
π − δπ close to π gives a large eigenphase denominator
tan½ðπ − δπÞ=2� ≃ ð2=δπÞ. Indeed, the two states repel both
ways around the unit circle [see Fig. 1(d)], suppressing the
second-order correction and pushing the splitting closer to

π. As we show below, π pairings remain much more robust
than zero pairings for many-level systems.
As the Zj are odd under the spin-flip (fermion-parity)

symmetry P, a longitudinal field V ¼ ðπ=2ÞPN
j¼1 hjZj

generically has a nonzero matrix element hne0jVjno0i cou-
pling partner states, but zero diagonal matrix elements.
Here, we denote the two paired many-body eigenstates of
UF;0 as jne0i and jno0i. They have the same occupations γ†αγα
except for the Majorana occupation n0;π ¼ γ†0;πγ0;π, with
n0;π ¼ 0 for jne0i and n0;π ¼ 1 for jno0i.
In the MZM phase, we can restrict to the two paired

levels provided that hybridization splitting and perturba-
tion are small compared to the level spacing of the many-
body spectrum. Diagonalizing the Hamiltonian within this
near-degenerate subspace gives the perturbed splitting
δ00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ 4jhne0jVjno0ij2

p
. This interpolates between

second- and first-order perturbation theory as the random
field V increases. The eigenstates evolve into perturbed
eigenstates jn�i ≃ ð1= ffiffiffi

2
p Þðjne0i � jno0iÞ, once the pertur-

bation exceeds δ0. With this understanding, we derive an
analytical splitting distribution [19], which is in excellent
agreement with numerical results [Fig. 2(c)]. Here, the
square-root singularity of the splitting distribution at δ00 ¼
δ0 is generic, while the bulk of the distribution is sensitive
to the choice for the distribution of the random fields.
In the MPM phase, the coupling between the two

π-paired states is negligible. Thus, we retain coupling
between states belonging to different pairs. Evaluating
the splittings δn ¼ Ee

n − Eo
n þ π in second-order perturba-

tion theory, we find

δn ≃ δπ þ
X
m

(
jhne0jVjmo

0ij2
2 tan Ee

n−Eo
m

2

−
jhno0jVjme

0ij2
2 tan Eo

n−Ee
m

2

)

þ
X
m≠n

(
jhne0jVjme

0ij2
2 tan Ee

n−Ee
m

2

−
jhno0jVjmo

0ij2
2 tan Eo

n−Eo
m

2

)
: ð4Þ

(a) (c)

(b)

(d) (e) (f)

FIG. 2. (a),(b) Random transverse fields: (a) Average and (b) variance of ln δ0;π vs chain length N for both MZMs (g < 1=2; triangles)
and MPMs (g > 1=2; dots). Numerical results (symbols) are in excellent agreement with analytical expressions (full lines) [19].
(c)–(e) Random longitudinal fields: Splitting distributions for various disorder strengths in (c) MZM and (d),(e) MPM phase. In (c),
numerical results (full lines) are well reproduced by an analytical two-level approximation (dashed lines). In (d),(e), numerical results
(full lines) can be interpreted in terms of second-order Floquet perturbation theory (dashed lines). (f) “Phase diagram” of the splitting
distribution (MPM phase) in the N–g plane for fixed dh. Parameters: J ¼ 0.5, (a),(b) dg ¼ 0.02, N ¼ 104 realizations,
(c) δ0 ¼ 5 × 10−10, (d) δπ ¼ 5 × 10−10, (e) δπ ¼ 2 × 10−6, (c)–(e) N ¼ 12, N ¼ 103.
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We have made second-order perturbation theory self-
consistent by inserting the exact eigenphases Ee;o

n in the
denominators. This is motivated by the observation that
there are couplings between many different pairs, which are
of similar magnitude and can thus plausibly be accounted
for in a self-consistent scheme. Linearizing Eq. (4) in the
small splittings δn, it can be readily solved numerically
[19]. Figure 2(d) shows that the resulting splitting distri-
bution reproduces exact diagonalization data remarkably
well over a wide range of disorder strengths. In particular,
one reproduces the crossover from a bimodal distribution
peaked near the splittings of the clean system to a narrower
distribution peaked at δ0π ¼ 0 [Figs. 2(d) and 2(e)] with
increasing disorder dh. We observe that the distribution
peaked at δ0π ¼ 0 is approximately Gaussian, when g is
sufficiently close to unity, but becomes Lorentzian for
larger 1 − g.
A corresponding “phase diagram” is shown in

Fig. 2(f), which can be understood from Eq. (4). For g
close to unity, the second sum on the right-hand side
can be dropped. Then, expanding in the δn, we find
δn ¼ δπ −

P
mðδn þ δmÞΣnm, where the

Σnm ¼ jhne0jVjmo
0ij2

4cos2 Ee
n−Ee

m
2

ð5Þ

are strictly positive. Setting δn ≈ δtyp as well as δm ≈�δtyp,
the typical splitting δtyp ≈ δπ=ð1þ hPm ΣnminÞ is indeed
reduced compared to δπ . (h…in is an average over n.) The
crossover between the bi- and unimodal distributions occurs
when Σ ∼ 1, implying N�� ∝ lnð1=dhÞ, approximately in-
dependent of g [19].
As g deviates further from unity, the single-particle

band broadens [Fig. 1(a)]. Consequently, the many-body
eigenphases cover the entire interval ½−π; π� when
N > N� ∼ 1=ð1 − gÞ2. In this regime, the second term
on the right-hand side of Eq. (4) becomes significant

due to the appearance of small denominators. The
Lorentzian distribution can then be interpreted as an
instance of a stable Levy distribution [19,36]. We note
that the splitting is well defined when the Majorana
splitting ∼e−N=ξ is small compared to the many-body
level spacing ∼2−N , where ξ is the correlation length of
the clean model, a condition satisfied for g > 0.71
at J ¼ 0.5.
Boundary spin-spin correlations.—We finally consider

the boundary spin-spin correlation function

GðtÞ ¼ 1

2N
trfZ1ðtÞZ1ð0Þg ¼ 1

2N

X
n;m

jðZ1Þnmj2e−iEnmt; ð6Þ

averaged over all initial states. Here, ðZ1Þnm ¼ hnjZ1jmi
and Enm ¼ En − Em. Sums are over all 2N many-body
eigenstates. In the MZM phase of the clean model, the
pairing of eigenphases makes GðtÞ oscillate with an
exponentially long period 1=δ0, [Fig. 1(e)]. In the MPM
phase, the slow oscillations with period 1=δπ modulate
rapid period-two oscillations [Fig. 1(f)].
Experimentally, GðtÞ in the presence of a random

longitudinal field persists up to times of the order of the
qubit lifetime (≪ 1=δ0;π) regardless of the phase [15]. This
is surprising given the dramatically different sensitivities of
the zero and π pairings to longitudinal disorder. In fact, we
find that the reasons underlying the robustness of GðtÞ are
very different in the two phases and that the long-time
behaviors are actually quite distinct.
In the MZM phase, the longitudinal field effectively

polarizes the boundary spins. Spins located away from the
boundary remain unpolarized due to the presence of mobile
domain walls in generic states. Correspondingly, first-order
degenerate perturbation theory gives perturbed eigenstates
jn�i, which have nonzero diagonal matrix elements of Z1

and ZN . Then, the boundary spin-spin correlation function
in Eq. (6) has diagonal and thus time-independent terms,

(a)

(b)

(c) (e)

(d) (f)

FIG. 3. Boundary spin-spin correlation function GðtÞ and its Fourier transform GðωÞ with random longitudinal fields (see legends for
strength). (a),(b) MZM phase: The random field suppresses the oscillations induced by the finite splitting δ0 and generates a constant
(ω ¼ 0) contribution. (c) MPM phase at g ¼ 0.9: The random field suppresses the oscillations induced by δπ in ð−1ÞtGðtÞ. The decay is
Gaussian for large disorder and becomes slower with increasing dh. The correlation function (markers) is well reproduced when
restricting the summation in Eq. (6) to π-paired states n andm, and (d)GðωÞ approximately tracks the δ0π distribution, cf. Fig. 2(d). (e),(f)
MPM phase at g ¼ 0.8: ð−1ÞtGðtÞ now decays exponentially reflecting the Lorentzian δ0π distribution. Parameters: J ¼ 0.5, N ¼ 12,
N ¼ 10, (a)–(d) δ0 ¼ δπ ¼ 5 × 10−10, (e),(f) δπ ¼ 2 × 10−6.
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once the perturbation is large compared to the exponentially
small splitting [Fig. 3(a)]. The Fourier transform of the
boundary spin-spin correlation function develops a domi-
nant zero-frequency peak [Fig. 3(b)]. In parallel, longi-
tudinal disorder rapidly suppresses the amplitude of the
Majorana oscillations.
In the MPM phase, we observe that the period-two

oscillations persist in the presence of a random longitudinal
field, while the slow oscillation of their envelope decays, see
Figs. 3(c) and 3(e). This can be understood as a conse-
quence of the splitting distribution across the many-body
spectrum akin to inhomogeneous broadening. In fact, GðtÞ
in Eq. (6) is dominated by terms, in which jni and jmi are
π-paired states [Figs. 3(c) and 3(e)]. Then, the envelope of
GðtÞ is effectively the Fourier transform of the splitting
distribution [Figs. 3(d) and 3(f)]. Damped oscillations of the
envelope persist for a bimodal distribution, with a long-time
power-law tail due to the hard cutoff of the splitting
distribution at δ0π ¼ δπ . This gives way to a nonoscillatory
Gaussian (exponential) decay in the Gaussian (Lorentzian)
regimes of the splitting distribution [Fig. 2(f)]. Thus, in the
MPM phase, GðtÞ directly reflects the robustness of the π
pairing to a random longitudinal field.
Conclusions.—We showed that even in the presence

of random longitudinal fields far exceeding the nominal
MPM splitting δπ , the π pairing of the MPM phase remains
exponentially precise in the system size N. We explain
this surprising robustness, which contrasts sharply with the
sensitivity of the zero pairing in the MZM phase, in terms
of level repulsion of many-body Floquet levels on the
unit circle, without invoking the notion of prethermali-
zation [15,21,37]. Our work also points towards the
importance of unconventional level statistics such as the
distribution of π splittings in Floquet systems.
It has been suggested to exploit the zero pairing in the

quantum Ising model for realizing qubits, e.g., by imple-
menting the model in chains of Josephson junctions
[38–40]. However, unlike the closely related Majorana
qubits [41–43], there would be no protection against
symmetry-breaking longitudinal fields. This may make
the remarkable robustness of π pairing interesting for
applications in quantum information processing.
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