Advanced Statistical Physics II - Problem Sheet 9

Problem 1 – Discretization Consider the following three finite differences:

- Forward difference $\Delta_h[f](x) = f(x+h) f(x)$
- Backward difference $\Delta_{-h}[f](x) = f(x) f(x h)$
- Central difference $\Delta_{h/2}[f](x) = f\left(x + \frac{1}{2}h\right) f\left(x \frac{1}{2}h\right)$
- a) (4P) Calculate the error between the three finite differences and the first derivative $\frac{\Delta[f](x)}{h} f'(x)$ using Taylor expansion.
- b) (3P) Considering the ordinary differential equation

$$\frac{d^2}{dx^2}u(x) = f(x) \quad x \in [0,1]$$
(1)

with boundary conditions u(0) = u(1) = 0. Discretize the interval [0,1] uniformly into *n* points using the central difference and rewrite (1) as a linear system:

$$A_{i,j}u_j = f_i \tag{2}$$

Find the entries of the matrix *A*.

Problem 2 – Reaction rate kinetics

Consider the three state model with transition rates $k_1, k_2, k_3, k_4, k_5, k_6$

of chemical substances A, B and C.

- a) (3P) Write down the chemical kinetics equations for this reaction as a function of the concentrations $\phi_A(t), \phi_B(t)$ and $\phi_C(t)$.
- b) (3P) Assume, that no particles can enter or leave the system, such that the sum of the masses of the substances is conserved and the transition rates $k_2 = k_3 = k_6 = 0$ and $k_5 = k_1$. Find the stationary state.
- c) (2P) Which is the value of k_4 to obtain $\phi_A = \phi_B = \phi_C = 1/3$?
- d) (5P) Considering the initial condition $\phi_A(0) = 1$ and $\phi_B(0) = \phi_C(0) = 0$ and the transition rates $k_2 = k_6 = k_3$, $k_1 = 0$ and $k_5 = k_4$. $k_2 = k_6 = k_4$, $k_1 = 0$, $k_5 = k_3$ Solve the differential system for $\phi_A(t)$ and $\phi_B(t)$, $\phi_C(t)$.

Hint: Use the Laplace transform $\hat{f}(s) = \int_0^\infty e^{-st} f(t) dt$ and the properties $\int_0^\infty dt f'(t) e^{-st} = s\hat{f}(s) - f(0)$ and $\hat{f}(s) = \frac{1}{s-a}$ for $f(t) = e^{at}$.