## Advanced Statistical Physics II - Problem Sheet 9

Problem 1 - Discretization
Consider the following three finite differences:

- Forward difference $\Delta_{h}[f](x)=f(x+h)-f(x)$
- Backward difference $\Delta_{-h}[f](x)=f(x)-f(x-h)$
- Central difference $\Delta_{h / 2}[f](x)=f\left(x+\frac{1}{2} h\right)-f\left(x-\frac{1}{2} h\right)$
a) (4P) Calculate the error between the three finite differences and the first derivative $\frac{\Delta[f](x)}{h}-f^{\prime}(x)$ using Taylor expansion.
b) (3P) Considering the ordinary differential equation

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} u(x)=f(x) \quad x \in[0,1] \tag{1}
\end{equation*}
$$

with boundary conditions $u(0)=u(1)=0$. Discretize the interval [0, 1] uniformly into $n$ points using the central difference and rewrite (1) as a linear system:

$$
\begin{equation*}
A_{i, j} u_{j}=f_{i} \tag{2}
\end{equation*}
$$

Find the entries of the matrix $A$.
Problem 2 - Reaction rate kinetics
Consider the three state model with transition rates $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$

of chemical substances $A, B$ and $C$.
a) (3P) Write down the chemical kinetics equations for this reaction as a function of the concentrations $\phi_{A}(t), \phi_{B}(t)$ and $\phi_{C}(t)$.
b) (3P) Assume, that no particles can enter or leave the system, such that the sum of the masses of the substances is conserved and the transition rates $k_{2}=k_{3}=k_{6}=0$ and $k_{5}=k_{1}$. Find the stationary state.
c) (2P) Which is the value of $k_{4}$ to obtain $\phi_{A}=\phi_{B}=\phi_{C}=1 / 3$ ?
d) (5P) Considering the initial condition $\phi_{A}(0)=1$ and $\phi_{B}(0)=\phi_{C}(0)=0$ and the transition rates $k_{2}=$ $k_{6}=k_{3}, k_{1}=0$ and $k_{5}=k_{4}$.
$k_{2}=k_{6}=k_{4}, k_{1}=0, k_{5}=k_{3}$
Solve the differential system for $\phi_{A}(t)$ and $\phi_{B}(t), \phi_{C}(t)$.
Hint: Use the Laplace transform $\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$ and the properties $\int_{0}^{\infty} d t f^{\prime}(t) e^{-s t}=s \hat{f}(s)-f(0)$ and $\hat{f}(s)=\frac{1}{s-a}$ for $f(t)=e^{a t}$.

