Advanced Statistical Physics II - Problem Sheet 5

Problem 1 - Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process, which is a slight generalization of the Langevin equation introduced in the lecture,

$$
\begin{equation*}
m \dot{v}(t)=-\gamma[v(t)-\bar{v}]+F_{R}(t), \tag{1}
\end{equation*}
$$

where m is the mass, γ is the friction constant, \bar{v} is an additional constant velocity and $F_{R}(t)$ is the random force which fulfills $\left\langle F_{R}(t)\right\rangle=0$ and $\left\langle F_{R}(t) F_{R}\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T \delta\left(t-t^{\prime}\right)$.
a) (3P) Derive the solution for the above equation

$$
\begin{equation*}
v(t)=v(0) \mathrm{e}^{-\gamma t / m}+\bar{v}\left[1-\mathrm{e}^{-\gamma t / m}\right]+\frac{1}{m} \int_{0}^{t} \mathrm{~d} t^{\prime} \mathrm{e}^{-\gamma\left(t-t^{\prime}\right) / m} F_{R}\left(t^{\prime}\right), \tag{2}
\end{equation*}
$$

using the same method of variation of the constant as in the lecture.
b) (2P) By averarging over the random force find the average velocity $\langle v(t)\rangle$ and its behaviour in the short $\langle v(0)\rangle$ and long time limits $\langle v(\infty)\rangle$.
c) $(2 \mathrm{P})$ Derive the velocity autocorrelation $\langle v(0) v(t)\rangle$ and its long time limit $\langle v(0) v(\infty)\rangle$. Use that $\left\langle v^{2}(0)\right\rangle=$ $k_{B} T / m$.
d) (3P) Derive the equal time velocity correlation $\left\langle v^{2}(t)\right\rangle$ and its long time limit $\left\langle v^{2}(\infty)\right\rangle$.

Comment 1: The kinetic energy at $t=\infty$ contradicts the equipartition theorem. Does the term $\gamma \bar{v}$ in the equation of motion follow from Hamilton's equation?
Comment 2: The Ornstein-Uhlenbeck process is often used in financial modelling, an example is the Vasicek model. Can you understand its advantages for this application from the previous results?

Problem 2 - Mean squared displacement

a) (6P) Now use eq. (2) to calculate the mean squared displacement $\operatorname{MSD}(t)=\left\langle(x(t)-x(0))^{2}\right\rangle=\left\langle\int_{0}^{t} d \tau \int_{0}^{t} d \tau^{\prime} v(\tau) v\left(\tau^{\prime}\right)\right\rangle$.

Hint: Remember that $\int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime} f\left(t^{\prime \prime}, t^{\prime}\right)=\int_{0}^{t} d t^{\prime \prime} \int_{t^{\prime \prime}}^{t} d t^{\prime} f\left(t^{\prime \prime}, t^{\prime}\right)$
b) (2P) What is the scaling of the mean squared displacement $\operatorname{MSD}(t)$ in the long time limit $t \rightarrow \infty$? In constrast, what is the scaling in the case of $\bar{v}=0$.
c) (2P) Expand the exponential to second order in t to obtain the short time limit of the mean squared displacement $\operatorname{MSD}(t)$.

