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Advanced Statistical Physics II – Problem Sheet 12

Problem 1 – Many-Particle Non-Equilibrium System
In the lecture, we discussed a class of non-equilibrium systems whose dynamics can be modelled by the
following multi-dimensional Langevin equation

żk(t) = −Akmzm(t) + ΦkmFm(t), 〈Fm(t)Fn(t′)〉 = 2δmnδ(t− t′) . (1)

Note, that we make use of the Einstein summation convention for double indices. The corresponding
Fokker-Planck equation reads

Ṗ (~z, t) = [∇kAkmzm +∇k∇mCkm]P (~z, t), Cij := ΦikΦjk . (2)

a) (5P) Use a Gaussian ansatz P0(~z) = N−1 exp(−ziE−1ij zj/2), for the stationary solution. Here Eij = 〈zizj〉
denotes the entries of the symmetric covariance matrix. Derive the Lyapunov equation discussed in the
lecture:

AikEkj +AjkEki = 2Cij (3)

b) (5P) As a concrete example, we will discuss a simple system of an overdamped particle in harmonic
confinement of strength M . Furthermore, it is harmonically coupled to a second particle:

H(x, y) =
M

2
x2 +

K

2
(x− y)2 (4)

Both particles are subject to friction γx,y and noise of strength bx,y . This leads to

z(t) =

(
x(t)
y(t)

)
, A =

(
(K +M)/γx −K/γx
−K/γy K/γy

)
, Φ =

(
bx/γx 0

0 by/γy

)
, (5)

In equilibrium, friction and noise strength are related via b2x/γx = b2y/γy = kBT . Formally, we can
understand departure from equilibrium by introducing different temperatures for each particle kBTx =
b2x/γx and kBTy = b2y/γy . Find the entries of the covariance matrix

E =

(
〈x2〉 〈xy〉
〈xy〉 〈y2〉

)
(6)

by solving the Lyapunov equation (3). Express the resulting covariances in terms of the dimension-less
parameter

α :=
Ty − Tx
Tx

=
γx
b2x
·
b2y
γy
− 1 (7)

which quantifies departure from equilibrium, and in terms of Tx. Check that in equilibrium (α = 0) the
equipartition theorem for the variables x and x− y is obeyed.

c) (3P) Consider a hypothetical experiment in which only the position x can be observed. Thus the position
y of the other particle is a hidden degree of freedom. An example would be a colloid in a laser trap whose
position is tracked. In equilibrium, the position of the trapped particle obeys a Boltzmann distribution

Peq(x) ∝ e−Mx2/2kBT (8)

i.e. the variance is given by 〈x2〉 = kBT/M . How does the variance/width of the observed distribution
change for Tx > Ty and Tx < Ty?



Problem 2 – Run and Tumble Particle
Consider the following dynamics of a free, overdamped particle in d dimensions:

~̇x(t) = ~u(t) + γ−1 ~FR(t), 〈~FR(t)~FR(t′)〉 = 2dkBTγδ(t− t′) (9)

Here, γ denotes the friction coefficient and ~FR(t) is the random force, which accounts for thermal fluctua-
tions. The particle propels itself forward at constant velocity |~u(t)| = v0. (For v0 = 0 (and thus ~u(t) = ~0), this
corresponds to standard Brownian motion.) The particle goes in the same direction for an average time τ
and then chooses a new direction completely at random - independent of the previous orientation and ther-
mal noise. Assuming the time for going in one direction is exponentially distributed, the autocorrelation of
~u(t) is given by

〈~u(t)~u(t′)〉 = v20e
−|t−t′|/τ (10)

This model has been proposed for the dynamics of bacterial motility. Fig. 1 shows a simulated trajectory of
such a run and tumble particle.
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Figure 1: Trajectory of a run and tumble particle in two dimensions.

a) (4P) Calculate the mean-square displacement ∆x2(t) = 〈(x(t) − x(0))2〉. Note that you need to aver-
age over both ~FR(t) and ~u(t). Hint: It is helpful to first calculate the velocity autocorrelation function
〈~̇x(t)~̇x(t′)〉 and then obtain the mean-square displacement via integration.

b) (3P) For both short and long times t, the dynamics is diffusive. Calculate the diffusion constants for
short and long times:

Dshort = lim
t→0

∆x2(t)

2t
, D = lim

t→∞

∆x2(t)

2t
(11)

Interpret the result. How does the active self propulsion affect the diffusion constant?


