Advanced Statistical Physics II - Problem Sheet 12

Problem 1 - Many-Particle Non-Equilibrium System

In the lecture, we discussed a class of non-equilibrium systems whose dynamics can be modelled by the following multi-dimensional Langevin equation

$$
\begin{equation*}
\dot{z}_{k}(t)=-A_{k m} z_{m}(t)+\Phi_{k m} F_{m}(t), \quad\left\langle F_{m}(t) F_{n}\left(t^{\prime}\right)\right\rangle=2 \delta_{m n} \delta\left(t-t^{\prime}\right) \tag{1}
\end{equation*}
$$

Note, that we make use of the Einstein summation convention for double indices. The corresponding Fokker-Planck equation reads

$$
\begin{equation*}
\dot{P}(\vec{z}, t)=\left[\nabla_{k} A_{k m} z_{m}+\nabla_{k} \nabla_{m} C_{k m}\right] P(\vec{z}, t), \quad C_{i j}:=\Phi_{i k} \Phi_{j k} \tag{2}
\end{equation*}
$$

a) (5P) Use a Gaussian ansatz $P_{0}(\vec{z})=\mathcal{N}^{-1} \exp \left(-z_{i} E_{i j}^{-1} z_{j} / 2\right)$, for the stationary solution. Here $E_{i j}=\left\langle z_{i} z_{j}\right\rangle$ denotes the entries of the symmetric covariance matrix. Derive the Lyapunov equation discussed in the lecture:

$$
\begin{equation*}
A_{i k} E_{k j}+A_{j k} E_{k i}=2 C_{i j} \tag{3}
\end{equation*}
$$

b) (5P) As a concrete example, we will discuss a simple system of an overdamped particle in harmonic confinement of strength M. Furthermore, it is harmonically coupled to a second particle:

$$
\begin{equation*}
H(x, y)=\frac{M}{2} x^{2}+\frac{K}{2}(x-y)^{2} \tag{4}
\end{equation*}
$$

Both particles are subject to friction $\gamma_{x, y}$ and noise of strength $b_{x, y}$. This leads to

$$
z(t)=\binom{x(t)}{y(t)}, \quad A=\left(\begin{array}{cc}
(K+M) / \gamma_{x} & -K / \gamma_{x} \tag{5}\\
-K / \gamma_{y} & K / \gamma_{y}
\end{array}\right), \quad \Phi=\left(\begin{array}{cc}
b_{x} / \gamma_{x} & 0 \\
0 & b_{y} / \gamma_{y}
\end{array}\right)
$$

In equilibrium, friction and noise strength are related via $b_{x}^{2} / \gamma_{x}=b_{y}^{2} / \gamma_{y}=k_{B} T$. Formally, we can understand departure from equilibrium by introducing different temperatures for each particle $k_{B} T_{x}=$ b_{x}^{2} / γ_{x} and $k_{B} T_{y}=b_{y}^{2} / \gamma_{y}$. Find the entries of the covariance matrix

$$
E=\left(\begin{array}{ll}
\left\langle x^{2}\right\rangle & \langle x y\rangle \tag{6}\\
\langle x y\rangle & \left\langle y^{2}\right\rangle
\end{array}\right)
$$

by solving the Lyapunov equation (3). Express the resulting covariances in terms of the dimension-less parameter

$$
\begin{equation*}
\alpha:=\frac{T_{y}-T_{x}}{T_{x}}=\frac{\gamma_{x}}{b_{x}^{2}} \cdot \frac{b_{y}^{2}}{\gamma_{y}}-1 \tag{7}
\end{equation*}
$$

which quantifies departure from equilibrium, and in terms of T_{x}. Check that in equilibrium $(\alpha=0)$ the equipartition theorem for the variables x and $x-y$ is obeyed.
c) (3P) Consider a hypothetical experiment in which only the position x can be observed. Thus the position y of the other particle is a hidden degree of freedom. An example would be a colloid in a laser trap whose position is tracked. In equilibrium, the position of the trapped particle obeys a Boltzmann distribution

$$
\begin{equation*}
P_{\mathrm{eq}}(x) \propto e^{-M x^{2} / 2 k_{B} T} \tag{8}
\end{equation*}
$$

i.e. the variance is given by $\left\langle x^{2}\right\rangle=k_{B} T / M$. How does the variance/width of the observed distribution change for $T_{x}>T_{y}$ and $T_{x}<T_{y}$?

Problem 2 - Run and Tumble Particle

Consider the following dynamics of a free, overdamped particle in d dimensions:

$$
\begin{equation*}
\dot{\vec{x}}(t)=\vec{u}(t)+\gamma^{-1} \vec{F}_{R}(t), \quad\left\langle\vec{F}_{R}(t) \vec{F}_{R}\left(t^{\prime}\right)\right\rangle=2 d k_{B} T \gamma \delta\left(t-t^{\prime}\right) \tag{9}
\end{equation*}
$$

Here, γ denotes the friction coefficient and $\vec{F}_{R}(t)$ is the random force, which accounts for thermal fluctuations. The particle propels itself forward at constant velocity $|\vec{u}(t)|=v_{0}$. (For $v_{0}=0$ (and thus $\left.\vec{u}(t)=\overrightarrow{0}\right)$, this corresponds to standard Brownian motion.) The particle goes in the same direction for an average time τ and then chooses a new direction completely at random - independent of the previous orientation and thermal noise. Assuming the time for going in one direction is exponentially distributed, the autocorrelation of $\vec{u}(t)$ is given by

$$
\begin{equation*}
\left\langle\vec{u}(t) \vec{u}\left(t^{\prime}\right)\right\rangle=v_{0}^{2} e^{-\left|t-t^{\prime}\right| / \tau} \tag{10}
\end{equation*}
$$

This model has been proposed for the dynamics of bacterial motility. Fig. 1 shows a simulated trajectory of such a run and tumble particle.

Figure 1: Trajectory of a run and tumble particle in two dimensions.
a) (4P) Calculate the mean-square displacement $\Delta x^{2}(t)=\left\langle(x(t)-x(0))^{2}\right\rangle$. Note that you need to average over both $\vec{F}_{R}(t)$ and $\vec{u}(t)$. Hint: It is helpful to first calculate the velocity autocorrelation function $\left\langle\vec{x}(t) \dot{\vec{x}}\left(t^{\prime}\right)\right\rangle$ and then obtain the mean-square displacement via integration.
b) (3P) For both short and long times t, the dynamics is diffusive. Calculate the diffusion constants for short and long times:

$$
\begin{equation*}
D_{\text {short }}=\lim _{t \rightarrow 0} \frac{\Delta x^{2}(t)}{2 t}, \quad D=\lim _{t \rightarrow \infty} \frac{\Delta x^{2}(t)}{2 t} \tag{11}
\end{equation*}
$$

Interpret the result. How does the active self propulsion affect the diffusion constant?

