Advanced Statistical Physics II - Problem Sheet 5

Problem 1 - Functional derivative and Taylor expansion

Given a functional space M and a function f, we define a functional as:

$$
\begin{equation*}
F: M \rightarrow \mathbb{R} \quad f(x) \equiv h \longmapsto F[f] \tag{1}
\end{equation*}
$$

and using the definition of the delta function a functional derivative as:

$$
\begin{equation*}
\frac{\delta F[f]}{\delta f\left(t^{\prime}\right)}=\lim _{\epsilon \rightarrow 0} \frac{F\left[f(t)+\epsilon \delta\left(t-t^{\prime}\right)\right]-F[f(t)]}{\epsilon} \tag{2}
\end{equation*}
$$

(a) (4P) Calculate $\frac{\delta F[f]}{\delta f(x)}$ and $\frac{\delta^{2} F[f]}{\delta f(x) \delta f(y)}$
where:

$$
\begin{equation*}
F[f]=\int d x d y f(x) g(x-y) f(y)+\int d x f(x) h(x) \tag{3}
\end{equation*}
$$

(b) (4P) The Taylor expansion for a functional $F[f]$ around a function $f_{0}(x)$ is:

$$
\begin{aligned}
& F[f]=F\left[f_{0}\right]+\left.\int d x_{1} \frac{\delta F[f]}{\delta f\left(x_{1}\right)}\right|_{f=f_{0}}\left(f\left(x_{1}\right)-f_{0}\left(x_{1}\right)\right) \\
& +\left.\frac{1}{2} \int d x_{1} d x_{2} \frac{\delta^{2} F[f]}{\delta f\left(x_{1}\right) \delta f\left(x_{2}\right)}\right|_{f=f_{0}}\left(f\left(x_{1}\right)-f_{0}\left(x_{1}\right)\right)\left(f\left(x_{2}\right)-f_{0}\left(x_{2}\right)\right)+\ldots
\end{aligned}
$$

Expand the functional $F[f]=\int d x\left(f(x)+f(x)^{2}\right)$ around $f_{0}(x)$ to all non-vanishing orders.
(c) (2P) Assume the functional:

$$
\begin{equation*}
F[f]=\int_{t 1}^{t 2} d t L(f(t), \dot{f}(t), t) \tag{4}
\end{equation*}
$$

If f extremizes F with fixed boundaries $\delta f\left(t_{1}\right)=\delta f\left(t_{2}\right)=0$, show that the functional derivative fulfills the Euler-Lagrange equation.
Hint: Use a multidimensional Taylor-series.

Problem 2 - First order linear ODE

Consider the inhomogeneous ODE of the function $x=x(t)$

$$
\begin{equation*}
\dot{x}+p(t) x=q(t) \tag{5}
\end{equation*}
$$

(a) (1P) First find a solution to the homogeneous ODE:

$$
\begin{equation*}
\dot{x}+p(t) x=0 \tag{6}
\end{equation*}
$$

(b) (2P) Then use it to solve the inhomogeneous ODE of eq. (5)

Hint: $\frac{d(u x)}{d t}=\dot{u} x+u \dot{x}$
(c) (3P) Calculate the current through an inductor $i_{L}(t)$ in an LR Circuit, with a sinusoidal power generator:

$$
\begin{equation*}
I_{0} \sin (\omega t)=\frac{V(t)}{R}+i_{L}(t) \tag{7}
\end{equation*}
$$

Hint: $V(t)=L \frac{d i_{L}}{d t}$

Problem 3 - Piezoelectric Effect

Consider the Hamiltonian:

$$
\begin{equation*}
\mathcal{H}(p, q, t)=\mathcal{H}_{0}(p, q)-E(t) P(q)-F(t) X(q) \tag{8}
\end{equation*}
$$

where $E(t)$ is the electric field in x-direction, $P(q)$ is the polarization in x-direction, $F(t)$ external force in x-direction and $X(q)$ is the extension in x-direction. Assume an external force $F(t)=F_{0} \delta(t)$ and a constant electric field that it is switched on at $t=0, E(t)=E_{0} \Theta(t)$.
(4P) Calculate $<\Delta P(t)>$ and $<\Delta X(t)>$ in terms of the correlation functions of P and X.

