Advanced Statistical Physics II - Problem Sheet 4

Problem 1 - Green's functions

The Green's function $G(\vec{x})$ of a linear differential operator \mathcal{L} with constant coefficients is defined via

$$
\begin{equation*}
\mathcal{L} G(\vec{x}-\vec{y})=\delta(\vec{x}-\vec{y}), \quad \vec{x}, \vec{y} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

For arbitrary inhomogeneity $f(\vec{x})$, the solution of $\mathcal{L} \rho(\vec{x})=f(\vec{x})$ is given by

$$
\begin{equation*}
\rho(\vec{x})=\int d^{n} x^{\prime} G\left(\vec{x}-\vec{x}^{\prime}\right) f\left(\vec{x}^{\prime}\right) \tag{2}
\end{equation*}
$$

since

$$
\mathcal{L} \rho(\vec{x})=\int d^{n} x^{\prime} f\left(\vec{x}^{\prime}\right) \mathcal{L} G\left(\vec{x}-\vec{x}^{\prime}\right)=\int d^{n} x^{\prime} f\left(\vec{x}^{\prime}\right) \delta\left(\vec{x}-\vec{x}^{\prime}\right)=f(\vec{x})
$$

a) (4P) Consider the (inhomogeneous) diffusion equation in one dimension:

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-D \frac{\partial^{2}}{\partial x^{2}}\right) \rho(x, t)=f(x, t) \tag{3}
\end{equation*}
$$

Using Fourier analysis, show that the Green's function $G(x, t)$ for eq. (3) is given by

$$
G(x, t)=\frac{\Theta(t)}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}}, \quad \Theta(t)= \begin{cases}1 & t>0 \tag{4}\\ 0 & \text { else }\end{cases}
$$

Remember problem sheet number 0 !
b) (4P) Use $G(x, t)$ to find the solution $\rho(x, t)$ for a box-shaped initial density profile:

$$
\rho_{0}(x)= \begin{cases}1 / 2 l & |x|<l \tag{5}\\ 0 & \text { else }\end{cases}
$$

i.e. $f(x, t)=\delta(t) \rho_{0}(x)$. Express the solution in terms of the error function

$$
\begin{equation*}
\operatorname{Erf}(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y \tag{6}
\end{equation*}
$$

Suggestion: It is instructive to plot the solution $\rho(x, t)$ vs. the position x for various times t. (This is not mandatory.)

Problem 2 - Time-dependent observables

a) (1P) Consider a probability density on phase space which only depends on the sum of the system's Hamiltonian and a perturbation, i.e.
$\rho \equiv \rho(\mathcal{H}(q, p)+\Delta(q, p))$. Show that such a distribution is not stationary for arbitrary $\Delta(q, p)$.
b) (1P) In the lecture, we derived the formula for the time correlation function of two observables $A(q, p)$ and $B(q, p)$ for a stationary system:

$$
\begin{equation*}
C_{A B}(\tau)=\int \mathrm{d} q \mathrm{~d} p \mathrm{~d} q^{\prime} \mathrm{d} p^{\prime} A(q, p) B\left(q^{\prime}, p^{\prime}\right) \mathrm{e}^{-\tau L(q, p)} \delta\left(q-q^{\prime}\right) \delta\left(p-p^{\prime}\right) \rho_{0}\left(q^{\prime}, p^{\prime}\right) \tag{7}
\end{equation*}
$$

Here, L is the Liouville operator, $\rho_{0} \equiv \rho_{0}\left(\mathcal{H}\left(q^{\prime}, p^{\prime}\right)\right)$ is a stationary density distribution and we assume that $\mathcal{H}(q,-p)=\mathcal{H}(q, p)$ (since we assume that $\left.\mathcal{H}(q, p) \sim p^{2}\right)$. Recall from the lecture that the substitution
$p \rightarrow-p, \quad p^{\prime} \rightarrow-p^{\prime}$ corresponds to time reversal. Find a relation between $C_{A B}(\tau)$ and $C_{A B}(-\tau)$ for the following observables:
i) $A=q$ and $B=p^{2}$
ii) $A=p$ and $B=H(q, p)$
iii) $A=p$ and $B=q p^{3}$

Problem 3 - Some probability theory

a) (2P) Assume that 80% of all emails are spam. 10% of all spam-mails contain the phrase "business proposal" while only 1% of the non-spam ones do. What is the probability that a given message containing the phrase "business proposal" is spam?
b) (4P) Consider the bivariate Gaussian distribution

$$
\begin{equation*}
p(x, y)=\frac{\exp \left(-\frac{1}{2}(\vec{u}-\vec{\mu})^{T} \Sigma^{-1}(\vec{u}-\vec{\mu})\right)}{\sqrt{4 \pi^{2}|\Sigma|}}, \quad \vec{u}^{T}=(x, y) \tag{8}
\end{equation*}
$$

with mean and covariance matrix:

$$
\vec{\mu}=\binom{\mu_{x}}{\mu_{y}}, \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \tag{9}\\
\Sigma_{x y} & \Sigma_{y y}
\end{array}\right) .
$$

Use the Chapman-Kolmogorov equation to calculate the marginal distributions $p_{x}(x)$ and $p_{y}(y)$.
c) (4P) Calculate the conditional distribution $p(x \mid y)$ for (8) (which is again Gaussian). Compute its mean and variance.

