Advanced Statistical Physics II - Problem Sheet 10

Problem 1 - Stationary solution of the Fokker-Planck equation (2P)
Show that the Boltzmann distribution $\rho_{\text {eq }}(x, p) \propto e^{-H(x, p) / k_{B} T}$ with $H(x, p)=p^{2} / 2 m+U(x)$ is a stationary solution of the Fokker-Planck equation for a massive particle in one dimension:

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(x, p, t)=\left[-\frac{p}{m} \frac{\partial}{\partial x}+U^{\prime}(x) \frac{\partial}{\partial p}+\frac{\gamma}{m} \frac{\partial}{\partial p} p+\gamma k_{B} T \frac{\partial^{2}}{\partial p^{2}}\right] \rho(x, p, t) \tag{1}
\end{equation*}
$$

Problem 2 - Mapping of the diffusion equation onto the Schrödinger equation (2P) Make the ansatz $\rho(x, t)=\sqrt{\rho_{\text {eq }}(x)} \psi(x, t)$, where $\rho_{\text {eq }}(x)=e^{-U(x) / k_{B} T} / Z$ is the equilibrium distribution, and show that the diffusion or Smoluchowski equation

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}=D \frac{\partial}{\partial x} e^{-U(x) / k_{B} T} \frac{\partial}{\partial x} e^{U(x) / k_{B} T} \rho(x, t) \tag{2}
\end{equation*}
$$

can be cast into a Schrödinger-like equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi(x, t)=-D\left[-\frac{\partial^{2}}{\partial x^{2}}+U_{\mathrm{eff}}(x)\right] \psi(x, t) \tag{3}
\end{equation*}
$$

with an effective "potential" $U_{\text {eff }}(x)$.

Problem 3 - Dissociation of a diatomic molecule

Consider the following potential:

$$
\begin{equation*}
U(x)=3 \Delta U\left(\frac{x}{x_{0}}\right)^{2}-2 \Delta U\left(\frac{x}{x_{0}}\right)^{3} \tag{4}
\end{equation*}
$$

a) (3P) Using Kramer's formula derived in the lecture, calculate the reaction time for the potential (4) and friction constant γ.
b) (1P) Is (4) a realistic pair-potential for the atoms in a diatomic molecule? Think about why it (still) may be used to calculate/estimate the dissociation time of a diatomic molecule using Kramer's formula.
c) (3P) As an application, we want to use our model to calculate the dissociation time of a Cl_{2} molecule in water at 300 K : The dissociation energy of Cl_{2} is $242 \mathrm{~kJ} / \mathrm{mol}$ which we choose as the barrier height. We estimate the friction constant γ from the diffusion constant $D=2 \mathrm{~nm}^{2} \mathrm{~ns}^{-1}$ of a single chloride ion at 300 K in water. For the location of the maximum x_{0}, we choose the bond length which is roughly 0.1 nm .

Problem 4 - Diffusion in a potential well

Solve the Smoluchowski equation for the potential

$$
U(x)= \begin{cases}0 & 0<x<L \tag{5}\\ \infty & \text { else }\end{cases}
$$

where it is assumed that the flux $J(x, t)$ defined via

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}=-\frac{\partial}{\partial x} J(x, t) \tag{6}
\end{equation*}
$$

vanishes at the boundaries $x=0$ and $x=L$.
a) (6P) Make the separation ansatz $\rho(x, t)=A(t) B(x)$ for the region $0<x<L$ and show that this leads to

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} B(x)=-\lambda B(x) \tag{7}
\end{equation*}
$$

for some real constant λ. Show that $\lambda=\frac{n^{2} \pi^{2}}{L^{2}}$ is the only non-trivial choice which yields a solution that fulfils the boundary conditions. Derive the final result

$$
\begin{equation*}
\rho(x, t)=\sum_{n=0}^{\infty} c_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi}{L} x\right) \tag{8}
\end{equation*}
$$

b) (3P) Assume an initial distribution $\rho(x, t=0)=\delta\left(x-x_{0}\right)$ with $0<x_{0}<L$ and determine the coefficients c_{n}. Hint: Recall that $\int_{0}^{\pi} d x \cos (m x) \cos (n x)=\frac{\pi}{2} \delta_{n, m}$.

