Advanced Statistical Physics II - Problem Sheet 1

Problem 1 - Integrating Factor

Recall that a differential

$$
\begin{equation*}
d f(\vec{x})=a_{1}(\vec{x}) d x_{1}+a_{2}(\vec{x}) d x_{2}+\cdots+a_{n}(\vec{x}) d x_{n} \tag{1}
\end{equation*}
$$

is called exact if it can be integrated, i.e. if there exists a scalar potential $f(\vec{x})$ such that $a_{i}(\vec{x})=\partial f / \partial x_{i}$ for $i=1, \ldots, n$.
(a) (2P) Consider the following expression

$$
\begin{equation*}
\Delta Q(U, V, N)=d U+\frac{U}{V} d V+\frac{U}{N} d N \tag{2}
\end{equation*}
$$

Convince yourself that it is not an exact differential (and that Q thus cannot define a thermodynamic potential) by showing that the curl of the vector field $(1, U / V, U / N)$ is non-zero.
(b) (2P) Given a non-exact differential $\Delta g(\vec{x})$, we might be able to find a function $c(\vec{x})$ such that $c(\vec{x}) \Delta g(\vec{x})$ becomes an exact differential. Such a function c is called integrating factor. Verify for our particular example that the entropy is a potential function by showing that for

$$
\begin{equation*}
T=\left(\frac{U^{2}}{a V N}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

$d S=\Delta Q / T$ is an exact differential.
(c) (1P) Integrate $d S$ to find the entropy S.

Problem 2 - Legendre Transform

(a) (2P) Compute the Helmholtz free energy $F(T, V, N)$ from the internal energy

$$
\begin{equation*}
U(S, V, N)=\frac{S^{3}}{27 a V N} \tag{4}
\end{equation*}
$$

(b) (1P) Do the back-transform

Problem 3 - Gibbs-Duhem Equation

(3P) Consider the thermodynamic potential $J(S, P, \mu)$. By using extensive/intensive arguments find an expression for J and use it to derive the Gibbs-Duhem equation:

$$
\begin{equation*}
S d T-V d P+N d \mu=0 \tag{5}
\end{equation*}
$$

Problem 4 - Differential form of $U(T, V, N)$

The aim of this exercise is to derive the differential form of the caloric equation of state mentioned in the lecture:

$$
\begin{equation*}
d U=C_{V} d T+\left(\frac{\alpha T}{\kappa_{T}}-P\right) d V+\left(\frac{U}{N}-\frac{V}{N}\left[\frac{\alpha T}{\kappa_{T}}-P\right]\right) d N \tag{6}
\end{equation*}
$$

Intermediate steps:
(a) (3P) Show that

$$
\begin{equation*}
\left.\frac{\partial U}{\partial V}\right|_{T, N}=\left.T \frac{\partial P}{\partial T}\right|_{V, N}-P \tag{7}
\end{equation*}
$$

Hint: Consider the differential of $S(U, V, N)-U / T$ and derive the appropriate Maxwell relation.
(b) (3P) Show that $\partial P /\left.\partial T\right|_{V, N}=\alpha / \kappa_{T}$ by using the thermal equation of state $V(T, P, N)$.
(c) (3P) $\partial U /\left.\partial N\right|_{T, V}$ can be obtained by noting that the caloric equation of state may be written as

$$
\begin{equation*}
U(T, V, N)=N u(T, V / N) \tag{8}
\end{equation*}
$$

For this exercise, recall the definition of the following material constants:

$$
\begin{equation*}
C_{V}=\left.\frac{\partial U}{\partial T}\right|_{V, N}, \quad \alpha=\left.\frac{1}{V} \frac{\partial V(T, P, N)}{\partial T}\right|_{P, N}, \quad \kappa_{T}=-\left.\frac{1}{V} \frac{\partial V(T, P, N)}{\partial P}\right|_{T, N} \tag{9}
\end{equation*}
$$

