Advanced Statistical Physics II - Problem Sheet 8

Problem 1 - Field-jump experiment

(3P) Derive the response of an observable $A(t)$ for an external field that is switched on at time $t=0$ and thus is of the form $h(t)=h_{0} \Theta(t)$. Assume an exponential correlation function $C(t)=C_{0} e^{-t / \tau}$.

Problem 2 - Fourier transformation of odd and even functions

(3P) In the lecture the following identity for the real and imaginary part of a single-sided response function has been derived

$$
\begin{equation*}
\tilde{\chi}^{\prime}(\omega)=\int \frac{d w^{\prime}}{2 \pi} i \tilde{\chi}^{\prime \prime}\left(\omega^{\prime}\right) \operatorname{sig}\left(\omega-\omega^{\prime}\right) \tag{1}
\end{equation*}
$$

Derive the analogous relation that gives the imaginary part $\tilde{\chi}^{\prime \prime}(\omega)$ in terms of the real part $\tilde{\chi}^{\prime}(\omega)$.

Problem 3 - Piezoelectric effect

(3P) In the lecture we introduced the Hamiltonian for the piezoelectric effect, which reads as

$$
\begin{equation*}
H(q, p)=H_{0}(q, p)-E(t) P(q)-F(t) X(q) . \tag{2}
\end{equation*}
$$

Here, $E(t)$ is a time-dependent electric field, $P(q)$ is the polarization, $F(t)$ is a time-dependent force and $X(q)$ is the extension. All these quantities are scalar quantities defined with respect to the x-coordinate.
Assume that there is a short electric pulse acting on the system at $t=0$, hence $E(t)=E_{0} \delta(t)$ and the force, which is acting on the system with a constant value, is turned off at $t_{1}>0$, hence $F(t)=F_{0}\left(1-\Theta\left(t-t_{1}\right)\right)$.
Calculate the response of the quantities $P(t)$ and $X(t)$ in terms of the correlation functions $C_{P P}(t)=$ $\langle P(t) P(0)), C_{P X}(t)=\langle P(t) X(0))$ and $C_{X X}(t)=\langle X(t) X(0))$.

Problem 4 - Residue calculus for the inverse Fourier transform

In the lecture the Fourier-transform of $f(t)=\Theta(t) e^{-t / \tau}$ has been shown to be $\tilde{f}(\omega)=\frac{1}{1 / \tau-i \omega}$, when defining the Fourier-transform as

$$
\begin{equation*}
\tilde{f}(\omega)=\int_{-\infty}^{\infty} d t e^{i \omega t} f(t) \tag{3}
\end{equation*}
$$

a) (2P) Show that this is actually a true statement.
b) (2P) In order to obtain the inverse Fourier transform of $\tilde{f}(\omega)$ the so called residue theorem is an efficient tool which will be described here briefly. Consider the contour integral

$$
\begin{equation*}
C=\oint d z \frac{1}{z} \tag{4}
\end{equation*}
$$

along a closed path around the pole at $z=0$. This can be solved when parameterizing a path as $z=R e^{i t}$ for $t=[0,2 \pi]$ where R is the radius of the circle around $z=0$. Then Eq. (??) is given by

$$
\begin{align*}
C=\oint d z \frac{1}{z} & =\int_{0}^{2 \pi} \frac{1}{z(t)} \dot{z}(t) d t \tag{5}\\
& =\int_{0}^{2 \pi} \frac{1}{R e^{i t}} i R e^{i t} d t=2 \pi i \tag{6}
\end{align*}
$$

Show that

$$
\oint d z \frac{1}{z^{n}}=\left\{\begin{array}{l}
2 \pi i, n=1 \tag{7}\\
0, n \neq 1
\end{array}\right.
$$

c) (2P) Another important identity is Cauchy's integral formula

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint d z \frac{f(z)}{z-z_{0}}=\operatorname{Res}\left(\frac{f(z)}{z-z_{0}}, z_{0}\right) \tag{8}
\end{equation*}
$$

which defines the residue of the function $\frac{f(z)}{z-z_{0}}$ at z_{0}.
Prove the left side of the equation by expressing $f(z)$ as a series around $f\left(z_{0}\right)$ and use the result from \mathbf{b})

Now you should be able to evaluate contour integrals in general.
d) (2P) As an example evaluate $\oint d z \frac{1}{1+z^{2}}$.
e) (3P) Obtain the inverse Fourier transform of $\tilde{f}(\omega)=\frac{1}{1 / \tau-i \omega}$ defined as

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-i w t} d w \tag{9}
\end{equation*}
$$

with the help of the residue theorem.
Hint: Transform the inverse Fourier integral to a complex contour integral which goes from $-R$ to R and with an arc from R back to $-R$, where R goes to ∞. Why does the contribution from the arc go to zero when $R \rightarrow \infty$?

