Advanced Statistical Physics II - Problem Sheet 2

Problem 1 - Computing thermodynamic potentials

For an one component system we know the isothermal compressibility κ_{T}, the thermal expansion coefficient α and the heat capacity at constant volume C_{V}. These are given by

$$
\begin{equation*}
\kappa_{T}=\frac{2}{p} \quad, \quad \alpha=\frac{3}{T} \quad, \quad \frac{C_{V}}{N}=\frac{3 \sigma T^{2}}{2 p} \tag{1}
\end{equation*}
$$

where σ is a numerical constant. With the assumption that the entropy is zero at zero temperature, $S(T=$ $0)=0$, we want to compute the internal energy $U(S, V)$ up to a constant U_{0}.
a) (3P) Use the first two equations and calculate $V(T, p)$. You will be left with a constant prefactor c that does not depend on T and p.
b) (2P) Using your result in a) show that the free energy is of the form $F(T, V)=f_{1}(T, V)+f_{2}(T)$. Determine $f_{1}(T, V)$.
c) (2P) Using your result in b) compute C_{V}. Compare to the given function for this quantity to obtain the constant c. What can you say about $f_{2}(T)$ now?
d) (1P) With the help of $S(T=0)=0$ argue that $f_{2}(T)=U_{0}$ is a constant.
e) (2P) Compute the internal energy $U(S, V)$.

Problem 2 - Thermodynamics of macromolecular deformation

For a rubber band of length z the following relation between temperature T, pulling force F in z-direction and length z is given by

$$
\begin{equation*}
z=z_{o}+\frac{\alpha F}{T}, \quad \alpha, z_{0}>0 \tag{2}
\end{equation*}
$$

Further, it is known that in order to heat the rubber band at fixed length z the constant heat capacity $C_{z}>0$ is needed, which is independent of temperature T.
a) (3P) Show that the internal energy U is independent of z.

Hint: In this scenario the internal energy is given by $d U=T d S+F d z$. Why? Reformulate $U(S, z)$ as $U(T, z)$ and remember that S is a total differential $\frac{\partial^{2} S}{\partial z \partial T}=\frac{\partial^{2} S}{\partial T \partial z}$.
b) (1P) Show that the heat capacity at constant z is not a function of z or T.
c) (3P) Derive the heat capacity at constant pulling force F

$$
\begin{equation*}
C_{F}=\left(\frac{\Delta Q}{\Delta T}\right)_{F} \tag{3}
\end{equation*}
$$

Hint: First, derive an expression for $d S(T, F)$
d) (3P) The rubber band is pulled from z_{1} to $z_{2}>z_{1}$. Derive an expression for $\left(\frac{\partial T}{\partial z}\right)_{S}$. Does the temperature increase or decrease?

