Advanced Statistical Physics II – Problem Sheet 2

Problem 1 - Computing thermodynamic potentials

For an one component system we know the isothermal compressibility κ_T , the thermal expansion coefficient α and the heat capacity at constant volume C_V . These are given by

$$\kappa_T = \frac{2}{p} \quad , \quad \alpha = \frac{3}{T} \quad , \quad \frac{C_V}{N} = \frac{3\sigma T^2}{2p} ,$$
(1)

where σ is a numerical constant. With the assumption that the entropy is zero at zero temperature, S(T = 0) = 0, we want to compute the internal energy U(S, V) up to a constant U_0 .

a) (3P) Use the first two equations and calculate V(T, p). You will be left with a constant prefactor c that does not depend on T and p.

b) (2P) Using your result in a) show that the free energy is of the form $F(T, V) = f_1(T, V) + f_2(T)$. Determine $f_1(T, V)$.

c) (2P) Using your result in b) compute C_V . Compare to the given function for this quantity to obtain the constant c. What can you say about $f_2(T)$ now?

d) (1P) With the help of S(T = 0) = 0 argue that $f_2(T) = U_0$ is a constant.

e) (2P) Compute the internal energy U(S, V).

Problem 2 - Thermodynamics of macromolecular deformation

For a rubber band of length *z* the following relation between temperature *T*, pulling force *F* in *z*-direction and length *z* is given by

$$z = z_o + \frac{\alpha F}{T}, \quad \alpha, z_0 > 0.$$
⁽²⁾

Further, it is known that in order to heat the rubber band at fixed length z the constant heat capacity $C_z > 0$ is needed, which is independent of temperature T.

a) (3P) Show that the internal energy U is independent of z. *Hint:* In this scenario the internal energy is given by dU = TdS + Fdz. Why? Reformulate U(S, z) as U(T, z) and remember that S is a total differential $\frac{\partial^2 S}{\partial z \partial T} = \frac{\partial^2 S}{\partial T \partial z}$. b) (1P) Show that the heat capacity at constant z is not a function of z or T.

c) (3P) Derive the heat capacity at constant pulling force F

$$C_F = \left(\frac{\Delta Q}{\Delta T}\right)_F \tag{3}$$

Hint: First, derive an expression for dS(T, F)

d) (3P) The rubber band is pulled from z_1 to $z_2 > z_1$. Derive an expression for $\left(\frac{\partial T}{\partial z}\right)_S$. Does the temperature increase or decrease?