Advanced Statistical Physics II - Problem Sheet 12

Problem 1 - Schrödinger equation

a) (2P) Show that the Smoluchowski-equation

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}=\frac{\partial}{\partial x} \frac{U^{\prime}(x)}{\gamma} \rho(x, t)+\frac{\partial^{2}}{\partial x^{2}} \frac{k_{B} T}{\gamma} \rho(x, t), \tag{1}
\end{equation*}
$$

where $\rho(x, t)$ denotes the particle density distribution, $U(x)$ a position-dependent external potential, γ the friction coefficient, is solved by the equilibrium distribution

$$
\begin{equation*}
\rho_{\mathrm{eq}}(x)=\frac{1}{Z} \mathrm{e}^{-U(x) / k_{B} T} \tag{2}
\end{equation*}
$$

with normalization constant Z.
b) (3P) Show that the Smoluchowski-equation can be transformed into a Schrödinger-like equation of the form

$$
\begin{equation*}
\frac{\partial \Psi(x, t)}{\partial t}=-D\left[-\frac{\partial^{2}}{\partial x^{2}}+U_{\mathrm{eff}}(x)\right] \Psi(x, t) \tag{3}
\end{equation*}
$$

where D is the diffusion coefficient. As an ansatz use

$$
\begin{equation*}
\rho(x, t)=\sqrt{\rho_{\mathrm{eq}}(x)} \Psi(x, t) \tag{4}
\end{equation*}
$$

with equilibrium distribution $\rho_{\mathrm{eq}}(x)$ from a). Derive the effective potential $U_{\text {eff }}(x)$.

Problem 2 - Diffusion in a potential well

Consider the Smoluchowski-equation from problem 1 with the potential

$$
U(x)= \begin{cases}0 & \text { if } 0<x<a \tag{5}\\ \infty & \text { else }\end{cases}
$$

a) (5P) In the lecture we defined the particle flux $J(x, t)$ by the equation

$$
\begin{equation*}
\frac{\partial \rho(x, t)}{\partial t}=-\frac{\partial}{\partial x} J(x, t) \tag{6}
\end{equation*}
$$

Use a separation ansatz similar to problem 1 e) on sheet 5 and the fact that the particle flux vanishes at the potential walls at 0 and a to solve the Smoluchowski equation for this potential. The result should be

$$
\begin{equation*}
\rho(x, t)=\sum_{0}^{\infty} A_{n} \cos \left(\frac{n \pi}{a} x\right) \exp \left(-\frac{n^{2} \pi^{2}}{a^{2}} D t\right) \tag{7}
\end{equation*}
$$

with the diffusion constant D.
b) (3P) Now assume that at time $t=0$ the distribution is $\rho(x, t=0)=N \delta\left(x-x_{0}\right)$ with $0<x_{0}<a$, where N denotes the total number of particles. Determine the coefficients A_{n} and write down the full solution of $\rho(x, t)$.

Problem 3 - Mean first passage time

The mean first passage time is the average time a particle needs to cross position x_{B} for the first time when starting at position x_{0} at $t=0$. It the lecture we derived the formula

$$
\begin{equation*}
\tau^{F P}=\frac{1}{D} \int_{x_{0}}^{x_{B}} \mathrm{~d} x^{\prime} \mathrm{e}^{U\left(x^{\prime}\right) / k_{B} T} \int_{x_{L}}^{x^{\prime}} \mathrm{d} x^{\prime \prime} \mathrm{e}^{-U\left(x^{\prime \prime}\right) / k_{B} T} \tag{8}
\end{equation*}
$$

with $x_{L}<x_{0}<x_{B}$.
a) (3P) We assume that $U\left(x<x_{L}\right)=\infty$. Calculate the mean first passage time as a function of x_{0}, x_{A} and x_{B} for the potential function

$$
U(x)= \begin{cases}\infty & \text { if } x<x_{L} \tag{9}\\ U_{0} & \text { if } x_{L} \leq x \leq x_{A} \\ U_{1} & \text { if } x_{A} \leq x \leq x_{B}\end{cases}
$$

b) (4P) From mean-first passage times to reaction rates

Now assume the potential is analytic and $U\left(x_{B}\right) \gg k_{B} T$ so that $\mathrm{e}^{U\left(x^{\prime}\right) / k_{B} T}$ is sharply peaked around x_{B}. In this case we only have to consider the outer integral around $x^{\prime} \approx x_{B}$.

1. Expand the outer integral around $x=x_{B}$ and the inner around $x=x_{A}$ both up to second order. Note that $U(x)$ has a maximum at $x=x_{B}$ and a minimum at $x=x_{A}$
2. Calculate the mean-first passage time by saddle point approximation. What is the resulting reaction rate?
Note: The limits need to be changed to $-\infty$ and $+\infty$.
