Advanced Statistical Physics II - Problem Sheet 1

Problem 1 - Thermodynamic Potentials and State Variables

a) $(2 \mathrm{P})$ Convince yourself that a generic function $f(u, v)$ fulfills the relations:

$$
\begin{equation*}
\left(\frac{\partial f}{\partial u}\right)_{v}\left(\frac{\partial u}{\partial f}\right)_{v}=1 \quad \text { and } \quad\left(\frac{\partial f}{\partial u}\right)_{v}\left(\frac{\partial u}{\partial v}\right)_{f}\left(\frac{\partial v}{\partial f}\right)_{u}=-1 \tag{1}
\end{equation*}
$$

In the following, a thermodynamic system with a constant particle number is considered:
b) (1P) Using the results from subtask a), express the isochoric pressure change with temperature

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{V} \tag{2}
\end{equation*}
$$

by the response functions

$$
\begin{equation*}
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}, \quad \kappa_{\mathrm{T}}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} . \tag{3}
\end{equation*}
$$

What is the total differential of $p(T, V)$?
c) (1P) Derive the differential forms of the caloric equations of state $U(T, V)$ and $U(T, p)$. Express the appearing partial derivatives by standard response functions.
d) (1P) Find the following Maxwell relation

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \tag{4}
\end{equation*}
$$

and then derive the relation

$$
\begin{equation*}
-p+T\left(\frac{\partial p}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial V}\right)_{T} . \tag{5}
\end{equation*}
$$

Hint: V and T are the natural variables of the free energy F.
e) (1P) Show that the functional determinant

$$
\frac{\partial(T, S)}{\partial(p, V)}=\left|\begin{array}{ll}
\left(\frac{\partial T}{\partial p}\right)_{V} & \left(\frac{\partial T}{\partial V}\right)_{p} \tag{6}\\
\left(\frac{\partial S}{\partial p}\right)_{V} & \left(\frac{\partial S}{\partial V}\right)_{p}
\end{array}\right|=1
$$

Hint: You can use the identity $\frac{\partial(T, S)}{\partial(p, V)}=\frac{\partial(T, S)}{\partial(A, B)} \frac{\partial(A, B)}{\partial(p, V)}$, where A and B are any state variables.

Problem 2 - Thermodynamic calculus

The internal energy of a system in its natural variables is given by

$$
\begin{equation*}
U(S, V)=(\sigma V)^{-m / n} N^{(m-1) / n}\left(\frac{n S}{n+1}\right)^{(n+1) / n} \tag{7}
\end{equation*}
$$

a) (4P) Calculate $U(T, V)$.
b) (2P) Calculate $p(T, V)$.
c) (3P) Calculate the free energy F, the enthalpy H and the Gibbs free energy G in their natural variables.
d) (4P) Compute the response functions α and κ_{T} from problem 1 b). Compute also the quotient α / κ_{T}.
e) (1P) Choose the parameter m such that p in b) is independent of the Volume V. What do you obtain for for the results of a)-c) when additionally choosing $n=3$? Which physical system is described by these equations?

