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1 Introduction

One mole of a substance contains NA ≈ 6.022 · 1023 particles1. This corresponds to 12 grams of
carbon 12C or about 2 to 100 grams of a gas, depending on its type. At room temperature and
atmospheric pressure, 1 mol of a gas takes up a volume of approximately 24.6 liters. Knowing
that even the three-body problem does not possess a general closed-form solution, it seems
hopelessly complicated to calculate properties of a system of this size. However, we will see in
the course of this lecture that large systems are particularly amenable to statistical treatment.
In the regime of the thermodynamic limit, where the particle number N → ∞, things can in
fact become easier – as long as we are only interested in statistical properties of the system as
a whole. This is the central motivation behind Statistical Physics and Thermodynamics.

1.1 Objective of Statistical Physics and Thermodynamics

The fields of Statistical Physics and Thermodynamics are concerned with physical systems
containing a large number of particles. Examples include gases, liquids, solids, and photon
gases. In fact, most systems are large; isolated particles rarely occur.
The key objective of Statistical Physics (or Statistical Mechanics, SM) is to predict the behav-

ior of a large system based on known properties of the individual particles and their interactions.
In principle, we can write down the equations of motion of an N -particle system. Solving this
problem, however, is difficult or impossible. Furthermore, the solution would not be very inter-
esting because we couldn’t test its details experimentally. From an experimental perspective,
we are interested in macroscopic parameters like temperature, pressure, heat capacity, etc. Sta-
tistical Mechanics aims at deriving these macroscopic parameters from microscopic properties
of the system.
Conversely, Thermodynamics (ThD) states relations between macroscopic quantities without

considering microscopic details. These relations result from the laws of Thermodynamics, a set
of heuristic rules that have been deduced and generalized from experimental findings. While
these laws are very general, allowing various predictions of a system’s behavior regardless of its
particular composition, they fail to yield substance-specific properties like heat capacity.

1.2 A brief history

Historically, Thermodynamics was developed earlier than Statistical Mechanics and even before
scientists understood the atomic structure of matter. The idea of the equivalence of heat and
energy (Mayer 1842, Joule 1849) marked an important milestone. The laws of Thermodynamics
were formulated by Clausius and Kelvin around 1850; Gibbs completed their work in 1878. The
theory of Statistical Mechanics was developed mainly by Boltzmann and Gibbs between 1860
and 1900. With the emergence of Quantum Mechanics, many results of Statistical Mechanics
were modified; yet the original framework remains valid today.
In this lecture, we will not follow the historical path but instead focus on deriving thermody-

namic results from the theory of Statistical Mechanics.

11 mol is defined as the amount of substance containing exactly NA elementary entities (atoms, molecules, . . . ),
where NA is the Avogadro constant.
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1.3 Systems and equilibrium

We distinguish between three types of idealized systems.

• Isolated system. A system that is completely isolated from the surrounding environment,
i.e. it exchanges neither energy nor particles with the environment. (Example: hot coffee
in a closed thermos bottle.)

• Closed system. A system that may exchange energy but not particles with its environment.
(Example: hot coffee in a closed glass jar.)

• Open system. A system that may exchange both energy and particles with the surrounding
environment. (Example: hot coffee in an open cup.)

In reality, even the best thermos bottle exchanges some energy and some particles with the
outside world. The isolated system and the closed system are idealizations that serve merely as
approximations of real-world systems.

Equilibrium. A system is said to be in equilibrium when none of the macroscopic parameters of
the system change in time. Systems that are not in equilibrium will change their macroscopic
properties until eventually reaching an equilibrium state.
Example 1.1. Imagine you add a cube of sugar to your hot tea. When the cube dissolves,
it initially forms a layer at the bottom of the tea cup, leading to an inhomogeneous sugar
concentration. After a while, the sugar is completely dissolved and homogeneously distributed
in the tea.
Equilibrium states are significantly easier to describe than non-equilibrium states. This lecture
will mainly restrict itself to the former case. Transitions between two equilibrium states may be
interpreted as a quasi-continuous concatenation of equilibrium states, as long as the transition
process is sufficiently slow.
Example 1.2. Consider the compression of a gas in a cylinder with a moveable piston. As long
as the piston motion is slow enough, the density distribution of the gas inside the cylinder is
homogenous and the gas pressure corresponds to the equilibrium pressure at all times.

1.4 Introductory example: The Boyle-Mariotte law

Before diving into the theory, let us look at a simple example that illuminates how Statistical
Mechanics works. To do this we only need Newton’s laws and a bit of statistics.
Consider an ideal gas composed ofN non-interacting identical mass points (particles), confined

in a container of volume V . The container is sealed by a lid of surface area A that may move
up and down in the z direction due to an external force (see fig. 1.1). The lid, with a weight
of mass ml, experiences a downwards-oriented gravitational force F . In equilibrium, this force
is compensated by the pressure P = F/A the gas exerts on the lid from below. The pressure
results from the elastic scattering of particles against the bottom surface of the lid.
During each elastic collision, momentum and energy must be conserved. We assume that

before the collision, the lid is at rest. Let m be the mass of a particle, v its velocity before the
collision, and v′ its velocity after the collision. Furthermore, we denote by vl′ the velocity (in
the z direction) of the lid after the collision. Conservation of momentum and energy requires

mvz = mvz
′ +mlvl

′

mvz
2

2 = mvz
′2

2 + mlvl
′2

2 , (1.1)
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Figure 1.1: Gas in a container with moveable lid. Left: N particles of an ideal gas are confined in a
container of volume V which is sealed with a moveable lid of mass ml. Right: Illustration of the
scattering process. A particle with mass m and vertical velocity vz collides elastically with the lid
(m � ml). After the collision, the particle has a vertical velocity of vz

′ = −vz; the momentum
transfer to the lid is mlvl

′ = 2mvz.

where vz represents the z component of the particle velocity (normal to the lid surface A;
components parallel to the lid surface are not relevant). The first line of (1.1) can be rewritten
as

mvz
′2 = 1

m

(
mvz −mlvl

′)2 .

Inserting this into the second line of (1.1) yields

mlvl
′ = 2mvz

1 + m
ml

. (1.2)

If the lid is much heavier than the particle ( mml → 0), the momentum transfer from the particle
to the lid becomes

mlvl
′ = 2mvz . (1.3)

According to Newtonian mechanics, the force acting on the lid equals the time derivative of
its momentum. To compute the total force F exerted by the gas, we must find out how many
particles collide with the lid in a certain time interval ∆t. The vertical distance a particle
travels during this time is ∆z = vz∆t. Assuming that half of the particles move upwards
(vz > 0) while the other half moves downwards (vz < 0), the probability that a particle in the
volume Vcoll = Avz∆t hits the lid is p = 1/2. Particles outside Vcoll will not reach the lid during
the time interval ∆t. Thus, the number Ncoll of particles colliding with the lid during ∆t is

Ncoll = 1
2ρAvz∆t ,

where ρ := N/V denotes the particle density. The force F , given by the total momentum
transfer per time, reads

F = Ncoll ·mlvl
′

∆t
= ρAmv2

z , (1.4)

where we have used (1.3). This leads to a gas pressure P = F/A of

P = N

V
mv2

z . (1.5)
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Actually, particles in a gas follow a continuous velocity distribution and the pressure P should
depend on the average of the squared velocity

〈
v2
z

〉
(more on statistical distributions follows in

chapter 2). Thermal particle motion in a gas has no preferred direction, i.e. 〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉

and the average kinetic energy 〈Ekin〉 is given by

〈Ekin〉 = m

2
〈
v2
x + v2

y + v2
z

〉
= 3m

2
〈
v2
z

〉
. (1.6)

With (1.6), we may write the pressure (1.5) as

P = 2
3
N

V
〈Ekin〉 . (1.7)

This agrees with the experimentally known result

P ∝ 1
V

(1.8)

which is referred to as the Boyle-Mariotte law.
Experiments have shown that the product PV is constant at constant temperature T (for

sufficiently low pressure, see fig. 1.2). This holds independently of the type of gas and is thus
independent of the particle mass m; we will see later why this is the case. At the same time,
the temperature relates closely to the average kinetic energy 〈Ekin〉. Indeed we may define the
temperature of a mono-atomic gas as

T := 2
3
〈Ekin〉
kB

. (1.9)

Here, kB denotes the Boltzmann constant. Its value kB ≈ 1.38 · 10−23 JK−1 is chosen such that
water freezes at T = 273.15K (0◦C) and boils at T = 373.15K (100◦C). The Boltzmann constant
serves the purpose of aligning the thermodynamic temperature scale (in units of Kelvin) with
the Celsius scale; it is not a natural constant.
Now, we may invoke (1.9) to replace the average kinetic energy in (1.7) with the temperature,

leading to the ideal gas law:
PV = NkBT (1.10)

Fig. 1.2 shows that even real gases with particle-particle interaction follow the ideal gas law for
pressures up to 10 bar. We will return to the ideal gas in sec. 3.6.

Velocity of gas particles. In the derivation above, the average squared velocity 〈v2〉 = 〈v2
x +

v2
y +v2

z〉 of gas particles appeared. How fast are gas molecules actually, say, of gaseous Hydrogen
H2 or Oxygen O2? Equations (1.6) and (1.9) yield an expression for the average velocity v̄ in
terms of temperature as well as the particle mass m:

v̄ :=
√
〈v2〉 =

√
3kBT
m

. (1.11)

At T = 273K, we find
for Hydrogen: mH2 ≈ 2 · 1.661 · 10−27 kg ⇒ v̄ ≈ 1800 m

s
for Oxygen: mO2 ≈ 32 · 1.661 · 10−27 kg ⇒ v̄ ≈ 460 m

s .
Hence gas molecules move quite fast! Furthermore, the relation between temperature and aver-
age kinetic energy,

〈Ekin〉 = 3
2kBT ,

implies the existence of absolute zero: a minimum value (T = 0K) of the thermodynamic temper-
ature scale where particles do not move (according to the classical description, in disagreement
with quantum mechanics).
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Figure 1.2: Pressure of ideal and real (air and helium) gases at constant temperature 0◦C. Data in the figure
are for one kmol of gas. The table is for an amount of air that at 0◦C and normal pressure of 1
bar has a volume of 10cm3. Up to pressures of ca. 10 bar the ideal gas law works well. For higher
pressures interactions between gas molecules give rise to corrections that can be treated by the
virial expansion.
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2 Mathematical Statistics

2.1 Probability
We demonstrate the key characteristics of a statistical description with the help of an experiment
which we conduct N times. As an outcome, each experiment yields an integer m. After N
repetitions the overall outcomeis the set {mi} with i = 1, . . . , N . The absolute frequency of
the event m, denoted my n(m), states how often the event m occurred. We define the relative
frequency h of the event as

h(m) := n(m)
N

,

which is a normalized quantity such that ∑m h(m) = 1.
In the limit of a large number of experiments (N → ∞), the relative frequency converges to

the probability p of an event,

p(m) := lim
N→∞

h(m) where
∑
m

p(m) = 1 . (2.1)

Addition theorem
For mutually exclusive events, the probability of observing any of these events in an experiment
is given by the sum of individual probabilities:

p(m1 ∨m2 ∨m3 ∨ · · · ) = p(m1) + p(m2) + p(m3) + · · · . (2.2)

Here, the symbol ∨ means “or.”
Example 2.1. Imagine we roll a single die. The probability of obtaining either a 1 or a 2 is the
sum of individual probabilities,

p(1 ∨ 2) = p(1) + p(2) = 1
6 + 1

6 = 1
3 .

Multiplication theorem
The probability of observing two independent events simultaneously is given by the product of
individual probabilities:

p(m1 ∧m2) = p(m1) · p(m2) , (2.3)

where the symbol ∧ means “and.”
Example 2.2. Now we roll two dice at the same time. The probability of obtaining 1 two times
is the square of the probability of observing one 1 alone,

p(1 ∧ 1) = p(1) · p(1) = 1
6 ·

1
6 = 1

36 .

Example 2.3. As a slightly more complicated example, consider the chance of rolling a straight
(1,2,3,4) with four dice. If we roll the dice in a specific order, the probability of first rolling 1,
then 2, then 3, and then 4 is

p(1 ∧ 2 ∧ 3 ∧ 4) =
(1

6

)4
= 1

1296 ≈ 0.0008 ,

6



Mathematical Statistics

according to the multiplication theorem. However, also (1243) or (3142) qualify as a straight if
the order of the dice doesn’t matter. In total there exist 4! = 4 · 3 · 2 · 1 = 24 possibilities to
arrange the numbers 1, 2, 3, and 4. Therefore, according to the addition theorem, the probability
of observing any of the 24 possible arrangements of a straight is

p
(
[1 ∧ 2 ∧ 3 ∧ 4] ∨ [1 ∧ 2 ∧ 4 ∧ 3] ∨ · · ·

)
= 4!

64 ≈ 0.019 .

In the above example, we introduced the factorial of a positive integer n,

n! := n(n− 1)(n− 2) · · · 2 · 1 ,

which states the number of permutations (possible distinct arrangements) of n distinct items.

2.2 Expectation value, variance, and deviation
Let x be an arbitrary system variable which takes the value x(m) when the system is in the
state m. In terms of the normalized probability distribution p(m), we define the expectation
value or mean value 〈x〉 as

〈x〉 :=
∑
m

x(m)p(m) . (2.4)

Example 2.4. A die has a uniform probability distribution p(m) = 1
6 for m = 1, 2, . . . , 6. Fur-

thermore, x(m) = m. The expectation value is thus

〈x〉 =
6∑

m=1

m

6 = 1 + 2 + 3 + 4 + 5 + 6
6 = 21

6 = 3.5 .

To quantify deviations from the expectation value, we define the variance ∆x2,

∆x2 :=
〈(
x− 〈x〉

)2〉
, (2.5)

which states the mean squared deviation of x from the expectation value 〈x〉. Expanding the
square, we can rewrite the variance as

∆x2 =
〈
x2 − 2x 〈x〉+ 〈x〉2

〉
= 〈x2〉 − 2 〈x〉 〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2 . (2.6)

Thus, the variance is given in terms of the expectation values of x and x2. The deviation ∆x is
defined as the square root of the variance,

∆x :=
√
〈x2〉 − 〈x〉2 . (2.7)

Example 2.5. What’s the deviation of the number of pips when rolling a die? In example 2.4,
we calculated the expectation value of the number of pips, 〈x〉 = 7/2. Moreover, we have

〈x2〉 =
6∑

m=1

m2

6 = 1 + 4 + 9 + 16 + 25 + 36
6 = 91

6 .

Thus, the deviation is

∆x =
√

91
6 −

(7
2

)2
≈ 1.7 .
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2.3 Binomial distribution
Imagine a random walker in one dimension who, per unit time, takes a step upwards with
probability p or a step downwards with probability q = 1− p. Random walks are used to model
the food search of animals, fluctuations in protein configuration, diffusion processes, and many
other applications in science. What is the probability that the walker, after taking N = 5 steps,
will end up one step higher than its original starting point? The binomial distribution provides
the answer.
To arrive one step higher after five steps, three of the walker’s steps must go up, while two

must go down. According to the multiplication theorem (sec. 2.1), the probability of such a
path is p3q2. However, since we disregard the order in which the walker goes up or down, there
exist ten distinct paths to reach the desired final position. The number of possible paths can be
found by calculating

10 = 5!
3! · 2! ,

where n! again denotes the faculty of n, stating the number of possible ways to arrange n
distinguishable objects in a line. The denominator accounts for the fact that not all five steps
are distinct: the three steps upwards (as well as the two steps downwards) are indistinguishable
among each other, and exchanging them will not change the path. Consequently, the probability
of taking three steps up and two steps down in an arbitrary order is P5(3) = 10p3(1− p)2.
Example 2.6. If p = 1/2, i.e. a step up is as probable as a step down, the probability of a net
upwards movement of one step after N = 5 steps is

P5(3) = 10 ·
(1

2

)5
≈ 0.3 .

Generally, if a random walker takes N steps of which m go upwards (and N −m downwards),
the total number of different paths is given by the binomial coefficient,(

N
m

)
:= N !

m!(N −m)! . (2.8)

We may think of the binomial coefficient as the number of possibilities to allocate m objects
to N places, or to choose m objects from among N objects. The probability of taking m steps
upwards among N steps in total is thus given by the binomial distribution

PN (m) =
(
N
m

)
pm(1− p)N−m . (2.9)

Ultimately, the binomial distribution states the probability of observing precisely m single
events of probability p in a total of N experiments. It is suitable for repeated experiments with
“digital” outcome (e.g. yes/no, up/down, success/failure, one/zero).
Example 2.7. The probability of a newborn child being a girl is approximately p ≈ 1/2. There-
fore, the probability that a family with three children has two girls is P3(2) ≈ 0.375.
Example 2.8. The probability of being born on New Year’s Eve is p = 1/365 (except in leap
years). This implies that the probability of having precisely one student with birth date Decem-
ber 31 in a Stat Mech lecture of 50 students is P50(1) ≈ 0.12.

Expectation value
First, let us prove that the binomial distribution is a normalized probability distribution. This
isn’t simple when applying brute force, but invoking the N -th order binomial formula,

(p+ q)N =
N∑
m=0

(
N
m

)
pmqN−m ,

8



Mathematical Statistics

brings us directly to the result. With q = 1− p, the proof reads
N∑
m=0

PN (m) =
N∑
m=0

(
N
m

)
pm(1− p)N−m

= (p+ (1− p))N

= 1 q.e.d. (2.10)
Since the binomial distribution PN (m) is a normalized probability distribution, its expectation
value (or mean) is, according to the definition in (2.4),

〈m〉 =
N∑
m=0

mPN (m) . (2.11)

Now, we use the binomial formula again to obtain a simple expression for 〈m〉 in terms of N
and p:

〈m〉 =
∑
m

mPN (m)

=
∑
m

m
N !

m!(N −m)!p
mqN−m

∗= p
∂

∂p

∑
m

N !
m!(N −m)!p

mqN−m

∗∗= p
∂

∂p
(p+ q)N

= pN(p+ q)N−1

= pN ,

where we have used p+q = 1 in the final step. Note that at ∗ we rewrote the expression in terms
of a partial derivative, 〈m〉 = p ∂

∂p

∑
m PN (m), to get rid of the factor m in the sum. This is a

trick worthy to remember, as we will use it more often in the course of this lecture. At ∗∗, we
inserted the binomial formula. In summary, the expectation value of the binomial distribution
is given by

〈m〉 = Np . (2.12)

This result agrees with the addition theorem for independent events (sec. 2.1).

Variance
To find the variance, we must additionally calculate the expectation value of m2. The procedure
is similar to the calculation above, though with two partial derivatives this time:〈

m2
〉

=
∑
m

m2PN (m)

=
∑
m

m2 N !
m!(N −m)!p

mqN−m

= p
∂

∂p
p
∂

∂p

∑
m

N !
m!(N −m)!p

mqN−m

= p
∂

∂p
p
∂

∂p
(p+ q)N

= p
∂

∂p

(
pN(p+ q)N−1)

= pN(p+ q)N−1 + p2N(N − 1)(p+ q)N−2

= pN + p2N(N − 1) ,

9



where p+ q = 1. Together with (2.12), we have

∆m2 = 〈x2〉 − 〈x〉2

= pN + p2N(N − 1)− p2N2

= pN + p2N .

Thus the variance of the binomial distribution is given by

∆m2 = pN(1− p) . (2.13)

Relative Deviation
By taking the square root of the variance (2.13), we obtain the deviation ∆m from the mean
for the binomial distribution:

∆m =
√
pN(1− p) . (2.14)

When comparing probability distributions characterized by different expectation values, the
comparison of deviations is not very meaningful unless they are put in relation to their respective
mean. A standardized measure which takes this into account is the relative deviation σrel defined
by

σrel := ∆m
〈m〉

. (2.15)

The relative deviation quantifies the dispersion of a probability distribution relative to its mean
value 〈m〉. For the binomial distribution, the relative deviation is given by

∆m
〈m〉

=
√

1− p
pN

∼ 1√
N

. (2.16)

Since the relative deviation is proportional to the reciprocal of the square root ofN , it approaches
zero as N gets very large:

lim
N→∞

∆m
〈m〉

= 0 . (2.17)

This important result is known as the law of large numbers. It justifies describing the properties
of statistical systems in terms of mean values, as long as the number of experiments N is
sufficiently large.
Example 2.9 (Compound system). Consider N = 1024 molecules of a gas (that’s roughly 1
mol) in a box of volume V . We divide the box into two equally large sub-volumes. Then, the
probability of finding m out of N molecules in one of the sub-volumes is given by the binomial
distribution. Let’s assume that a molecule is equally likely to be in either of the sub-volumes,
such that p = q = 1/2. On average, there are 〈m〉 = Np = 0.5 · 1024 molecules in a sub-volume.
The deviation of this mean occupation number is ∆m =

√
Npq =

√
N/4 = 0.5 · 1012 (half a

trillion molecules!). However, in relation to the expectation value 〈m〉, we obtain a negligible
relative deviation of ∆m

〈m〉 = 10−12. This illustrates why Thermodynamics works: since most
physical systems are very large, the probability distributions of statistical system properties
have very sharp peaks (relative to the mean value).
Rare events. There exist situations where N � 1 is very large but the probability p � 1 is
very small, such that the product 〈m〉 = Np is finite1. This characterizes rare events for which
the relative deviation may in fact be large. To demonstrate this, let us consider the following
example.

1Here we mean finite in the sense that Np isn’t a very large number like N .

10
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Example 2.10 (Rare events). The number of car trips a driver undertakes in a lifetime can
arguably be very large, whereas the probability of having an accident per car ride is pretty
small. For p� 1, the deviation ∆m is approximately

∆m =
√
Np(1− p) ≈

√
Np =

√
〈m〉 ,

where 〈m〉 gives the average number of accidents in a lifetime. Then, the relative deviation,

∆m
〈m〉

≈ 1√
〈m〉

,

does not become negligible for large N (〈m〉 remains finite). For example, if the mean of a
rare event is 〈m〉 = 0.1, the relative deviation is approximately ∆m

〈m〉 ≈ 3. Thus, we may expect
significant deviations from the mean, which is why it’s good to insure yourself against events
with large relative deviations!

2.4 Normal distribution
We can simplify the binomial distribution (2.9) in the limit of large N � 1, while p remains a
finite number, such that Np→∞. Let us take the logarithm of the binomial distribution,

lnPN (m) = ln
(

N !
m!(N −m)!p

m(1− p)N−m
)

= m ln p+ (N −m) ln(1− p) + ln(N !)− ln(m!)− ln((N −m)!) . (2.18)

This expression may be simplified using the Stirling formula,

ln(N !) = N lnN −N +O(lnN) . (2.19)

To derive the formula (2.19), we first rewrite

ln(N !) = ln

 N∏
j=1

j

 =
N∑
j=1

ln j . (2.20)

Since N � 1, we may approximate the sum by an integral:
N∑
j=1

ln j ≈
∫ N

1
dx ln x

= x ln x− x
∣∣∣∣N
1

= N lnN −N + 1
⇒ ln(N !) = N lnN −N +O(lnN) . (2.21)

Choosing 1 as the lower boundary of the integral is merely an approximation, such that the
formula contains an error in the order of lnN . Inserting the Stirling formula (2.19) into (2.18),
we now obtain

lnPN (m) = m ln p+ (N −m) ln(1− p) +N lnN −m lnm− (N −m) ln(N −m) . (2.22)

PN (m) has a sharp peak at 〈m〉 for large N , as we know from the law of large numbers. This
also holds for the logarithm, lnPN (m). We perform a Taylor expansion around the maximum
m∗:

lnPN (m) = lnPN (m∗) + 1
2(m−m∗)2 d2

dm2 lnPN (m)
∣∣∣∣∣
m=m∗

+ . . . , (2.23)
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where m∗ is defined by

0 = d
dm lnPN (m)

∣∣∣∣
m=m∗

,

such that the linear term vanishes in the expansion. At the maximum, we have

0 = d
dm lnPN (m) = ln p

1− p + ln N −m
m

⇒ ln 1− p
p

= ln N −m
m

1− p
p

= N −m
m

1
p

= N

m
⇒ m∗ = Np . (2.24)

Thus, the maximum m∗ of our approximation for lnPN (m) coincides with the mean 〈m〉 = Np.
As we might expect, the mean is equivalent to the most probable value in the limit of N →∞.
Using this result, the second derivative reads

d2

dm2 lnPN (m)
∣∣∣∣∣
m=m∗

=
(
− 1
m
− 1
N −m

) ∣∣∣∣
m=m∗

= − 1
Np
− 1
N −Np

= − 1
Np
− 1
Nq

= −q + p

Npq

= − 1
Npq

= − 1
∆m2 , (2.25)

where q = 1−p and the last line follows from the definition of the variance ∆m2 of the binomial
distribution (2.13). Finally, it is easily verified by inserting m∗ = Np into (2.22) that the
constant term of the Taylor expansion vanishes, lnPN (m∗) = 0. The expansion up to second
order therefore reads

lnPN (m) = −(m−m∗)2

2∆m2 +O
(
m3
)
. (2.26)

Exponentiating both sides yields an approximation W (m) of the binomial distribution,

W (m) ∝ exp
(
−(m− 〈m〉)2

2∆m2

)
, (2.27)

where we replaced m∗ by 〈m〉. Note that by Taylor expanding the logarithm of the binomial
distribution instead of PN (m) itself, we obtained an exponential solution for W (m) that is
normalizable (such that

∫∞
−∞ dmW (m) = 1), as required for a probability distribution. The

normalized normal distribution W (m) is given by

W (m) = 1√
2π∆m2

exp
(
−(m− 〈m〉)2

2∆m2

)
. (2.28)

As a simplification of the binomial distribution, the normal distribution is valid in the limit of
N →∞ while p remains finite. It is fully determined by the mean 〈m〉 and the variance ∆m2.

12
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2.5 Poisson distribution

For very large N � 1 but simultaneously p � 1, such that the product Np is finite, we
can simplify the binomial distribution in a different way. This case leads us to the Poisson
distribution. Let us break down the binomial distribution (2.9) into parts,

PN (m) = N !
(N −m)!

1
m!

(
p

1− p

)m
(1− p)N . (2.29)

First, we approximate the factor (1− p)N by writing

(1− p)N = exp
[
N ln(1− p)

]
≈ e−Np , (2.30)

where we have Taylor expanded the logarithm up to first order, ln(1 + x) = x+O
(
x2). Secondly,

we use p� 1 to approximate (
p

1− p

)m
≈ pm . (2.31)

Lastly, we tackle the binomial coefficient:

N !
(N −m)! = exp

[
ln(N !)− ln((N −m)!)

]
∗≈ exp

[
N ln(N)−N − (N −m) ln(N −m) +N −m

]
= exp

[
N ln

(
N

N −m

)
+m ln (N −m)−m

]
= exp

[
−N ln

(
N −m
N

)
+m ln

(
N −m
N

)
+m lnN −m

]
= exp

[
−N ln

(
1− m

N

)
+m ln

(
1− m

N

)
+m lnN −m

]
†
≈ exp

[
m+O

(
m2

N

)
+O

(
m2

N

)
+m lnN −m

]
≈ exp [m lnN ] = Nm . (2.32)

Here we applied the Stirling formula at ∗ and used the Taylor series up to first order, ln(1 + x) =
x+O

(
x2), in the step marked by †. Putting things together, we arrive at an approximation of

the binomial distribution for finite Np,

PN (m) ≈ Nm 1
m!p

me−Np . (2.33)

For simplicity we define λ := Np. Then, the Poisson distribution is given by

W (m) = λm

m! e
−λ . (2.34)

This result turns out to be normalized: using N →∞ we show

N∑
m=0

W (m) ≈
∞∑
m=0

W (m) =
∞∑
m=0

λm

m! e
−λ = eλe−λ = 1 . (2.35)
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Expectation value. Let us calculate the expectation value of the Poisson distribution:

〈m〉 =
∞∑
m=0

mW (m)

= e−λ
∞∑
m=0

mλm

m!

= e−λ λ
∂

∂λ

∞∑
m=0

λm

m!

= e−λ λ
∂

∂λ
eλ

= e−λλeλ

= λ . (2.36)

As expected, the expectation value of the Poisson distribution, 〈m〉 = λ = Np, is identical to
the expectation value of the binomial distribution.

2.6 Continuous density distributions

Previously, we have seen two different ways of normalizing a probability distribution. The
normalization of the normal distribution was carried out via integration from −∞ to∞, whereas
we showed the normalization of the Poisson distribution by means of a discrete sum over all m.
In other words, we interpreted the normal distribution as a continuous distribution but the
Poisson distribution as a discrete distribution. In this section, let us briefly address how discrete
and continuous probability distributions relate.
In the continuous case, we have a continuous random variable x controlled by a density

distribution p(x) (e.g. the normal distribution). The normalization requirement reads∫ ∞
−∞

dx p(x) = 1 .

The moments2 of this density distribution are then calculated via

〈xn〉 :=
∫ ∞
−∞

dxxnp(x) .

More generally, the expectation value of any function f(x) is given by

〈f〉 :=
∫ ∞
−∞

dx f(x)p(x) . (2.37)

A discrete probability distribution pm may be written as a continuous density distribution p(x)
by summing over δ-distributions representing the outcomes xm, such that

p(x) =
∑
m

pmδ(x− xm) . (2.38)

The δ-distribution, as a reminder, is defined by∫ ∞
−∞

dx f(x)δ(x− y) = f(y) .

2The n-th moment of the distribution p(x) is defined as the expectation value 〈xn〉. For more about moments,
see section 2.7.
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We may switch between the continuous and the discrete description of the expectation value 〈f〉
by inserting (2.38) into (2.37), which yields

〈f〉 =
∫ ∞
−∞

dx f(x)p(x)

=
∫ ∞
−∞

dx f(x)
∑
m

pmδ(x− xm)

=
∑
m

pm

∫ ∞
−∞

dx f(x)δ(x− xm)

=
∑
m

pmf(xm) . (2.39)

2.7 Characteristic function
Let us introduce the characteristic function G,

G(k) :=
〈
e−ikx

〉
=
∫

dx p(x) e−ikx . (2.40)

This is nothing but the Fourier transform of p(x). As we will see, the characteristic function
serves as a tool to quickly calculate moments and cumulants of a distribution.

Moments. The n-th derivative of G(k) is

dnG(k)
dkn =

∫
dx p(x) (−ix)n e−ikx .

Note that n-fold differentiation leads to a factor (−ix)n within the integral. Evaluating the
derivative at k = 0, we find

dnG(k)
dkn

∣∣∣∣
k=0

= 〈(−ix)n〉 = −in 〈xn〉 .

Thus, the n-th derivative of G(k) is directly linked to the n-th moment of the distribution p(x).
The characteristic function allows us to easily calculate all moments:

〈xn〉 = in
dnG(k)

dkn
∣∣∣∣
k=0

. (2.41)

In turn, moments of p(x) correspond to coefficients of the Taylor series of G(k),

G(k) =
∞∑
n=0

kn

n!
dnG(k)

dkn
∣∣∣∣
k=0

=
∞∑
n=0

(−ik)n
n! 〈xn〉 . (2.42)

In fact, it turns out that the logarithm of the characteristic function is much better for
characterizing probability distributions. Taking the logarithm has already proven to be useful
when we derived the normal distribution (see section 2.4). In many cases, the logarithm is easier
to work with. For example, the normal distribution is exponential, p(x) ∝ exp

[
−(x− x∗)2]. Its

logarithm, however, is simply a second-order polynomial: ln p(x) ∝ (x− x∗)2.

Cumulants. We define the n-th cumulant 〈xn〉c as

〈xn〉c := in
dn lnG(k)

dkn
∣∣∣∣
k=0

, (2.43)
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which implies that

lnG(k) =
∞∑
n=1

(−ik)n
n! 〈xn〉c . (2.44)

How do moments and cumulants relate? We show this with the following derivation sketch.
First, we explicitly write the Taylor series in eq. (2.42),

G(k) = 1− ik 〈x〉 − k2

2
〈
x2
〉

+ ik3

6
〈
x3
〉

+ . . .︸ ︷︷ ︸
=:z

, (2.45)

where we label the underbraced term z and use the Taylor expansion of ln(1 + z) = z − 1
2z

2 +
1
3z

3 − 1
4z

4 + . . . to find

lnG(k) = −ik 〈x〉 − k2

2
〈
x2
〉

+ k2

2 〈x〉
2 + . . . . (2.46)

Comparing this with eq. (2.44), that is, lnG(k) = −ik 〈x〉c − k2

2 〈x
2〉c + . . . , we obtain the

cumulants in terms of moments:

〈x〉c = 〈x〉
〈x2〉c = 〈x2〉 − 〈x〉2

〈x3〉c = 〈x3〉 − 3〈x2〉〈x〉+ 2 〈x〉3

. . . (2.47)

Note that the first cumulant corresponds to the mean, while the second cumulant corresponds
to the variance ∆x2. Generally, cumulants are great for characterizing probability distributions!
Example 2.11 (Cumulants of the normal distribution). The normal distribution is given by eq.
(2.28). According to (2.40), the associated characteristic function is

G(k) =
∫ ∞
−∞

dxW (x)e−ikx =
∫ ∞
−∞

dx√
2π∆2

exp
[
−ikx− (x− x∗)2

2∆2

]
,

where x∗ denotes the mean and ∆2 represents the variance. We solve the integral by applying
the technique completing the square. In the first step, we shift the integration variable by the
mean, x = x̃+ x∗. (The infinite integration limits remain unchanged; x∗ is finite.) This yields

G(k) =
∫ ∞
−∞

dx̃√
2π∆2

exp
[
−ikx∗ − ikx̃− x̃2

2∆2

]
.

Now we complete the square in the square brackets by rewriting

−ikx̃− x̃2

2∆2 = − 1
2∆2

(
x̃+ ik∆2)2 − k2∆2

2 .

We transform variables again, such that x̂ = x̃+ ik∆2. This results in

G(k) =
∫ ∞
−∞

dx̂√
2π∆2

exp
[
−ikx∗ − 1

2∆2 x̂
2 − k2∆2

2

]

= e−ikx
∗− k

2∆2
2

∫ ∞
−∞

dx̂√
2π∆2

e−
x̂2

2∆2

= exp
[
−ikx∗ − k2∆2

2

]
. (2.48)
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Based on eq. (2.43), the cumulants of the normal distribution are found by calculating derivatives
of lnG(k) = −ikx∗ − k2∆2

2 , evaluated at k = 0. Specifically, the first and second cumulants are

d lnG(k)
dk = −ix∗ − k∆2 ⇒ 〈x〉c = 〈x〉 = i · (−ix∗) = x∗

d2 lnG(k)
dk2 = −∆2 ⇒ 〈x2〉c = 〈x2〉 − 〈x〉2 = −1 · (−∆2) = ∆2 , (2.49)

as expected. Since lnG(k) is a quadratic function in this example (note that the logarithm is
easy to work with), we immediately know that all higher derivatives vanish. Thus, all higher-
order cumulants (n > 2) are zero; the normal distribution is characterized entirely by the first
two cumulants. This implies that non-zero higher-order cumulants indicate deviations from the
normal distribution.

2.8 Multi-dimensional probability distributions
A joint distribution of several random variables x1, x2, . . . , xn is determined by the multi-
dimensional probability density p(x1, x2, . . . , xn). Normalization requires that∫

dx1

∫
dx2 · · ·

∫
dxn p(x1, x2, . . . , xn) . (2.50)

To obtain the probability density for one of the variables, we must integrate over all other
random variables:

p(x1) =
∫

dx2 · · ·
∫

dxn p(x1, x2, . . . , xn) . (2.51)

Some refer to this projection process as the marginalization of the variables x2, . . . , xn: we are
interested in the probability of x1 regardless of the values of the other variables. Furthermore,
moments are generally of the form 〈xm1

1 . . . xmnn 〉. In this context, the covariance,

cov(xj , xk) := 〈xjxk〉 − 〈xj〉 〈xk〉 (2.52)

plays an important role as a measure of the correlation of the two random variables xj and xk.
In the case that their joint distribution factorizes, i.e. p(xj , xk) = p(xj)p(xk), the variables are
independent of one another and the covariance vanishes:

〈xjxk〉 =
∫

dxjdxk xjxkp(xj)p(xk)

=
∫

dxj xjp(xj)
∫

dxk xkp(xk)

= 〈xj〉 〈xk〉 ⇒ cov(xj , xk) = 0 .

2.9 Central limit theorem
Consider a sum of random variables x1, x2, . . . , xm,

y =
m∑
i=1

xi
m

, (2.53)

where each random number xi follows the same probability distribution p(xi). In the limit
m → ∞, y represents the mean of p(xi). What is the distribution of y? The central limit
theorem provides the answer. Let us illuminate this theorem by means of a concrete example.
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Example 2.12. Let p(x) be the weight distribution of a single person. Then, what is the weight
distribution of 100 people? This question is important, for instance, when estimating before a
flight how much fuel the airplane must carry. The average weight y of 100 individuals obeys the
distribution W (y), given by

W (y) =
∫

dx1 . . . dxm p(x1) · · · p(xm) δ
(
y −

m∑
i=1

xi
m

)
. (2.54)

Here δ denotes the delta distribution. Note that we assume individual weights to be uncorrelated,
such that the multiplication theorem (see section 2.1) holds. For the n-th moment we find

〈yn〉 =
∫

dy ynW (y)

=
∫

dy yn
∫

dx1 . . . dxm p(x1) · · · p(xm) δ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
∫

dy ynδ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
(

m∑
i=1

xi
m

)n

=
〈(

m∑
i=1

xi
m

)n〉
. (2.55)

The characteristic function of W (y) reads

G(k) =
∫

dy e−ikyW (y)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
∫

dy e−ikyδ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm) exp
[
−ik

∑
i

xi
m

]

=
∫

dx1 p(x1)e−ikx1/m ·
∫

dx2 p(x2)e−ikx2/m · · ·
∫

dxm p(xm)e−ikxm/m

=
[
g

(
k

m

)]m
, (2.56)

where g(k) =
∫

dx p(x)e−ikx represents the characteristic function of p(x). This implies that

lnG(k) = m ln
[
g

(
k

m

)]
. (2.57)

Consequently, the cumulants are given by

〈yn〉c = in
dn lnG(k)

dkn
∣∣∣∣
k=0

= inm
dn ln g(k/m)

dkn
∣∣∣∣
k=0

= inm1−n dn ln g(q)
dqn

∣∣∣∣
q=0

(2.58)

where we have substituted q = k
m in the final step. Now, since

〈xn〉c = in
dn ln g(q)

dqn
∣∣∣∣
q=0
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by definition, we may write

〈yn〉c = m1−n 〈xn〉c . (2.59)

This is the central limit theorem. The only assumption made here is that the n-th moments
must exist. Importantly, the central limit theorem has the following implications.

• n = 1 ⇒ 〈yn〉c = 〈xn〉c ,
In terms of our example, the mean of the average weight of 100 people equals the mean of
the weight of an individual.

• n = 2 ⇒ 〈yn〉c = 1
m 〈x

n〉c .
This underpins the law of large numbers: for the distribution W (y) of the sum, the mean
deviation becomes much smaller than for the individual distribution p(x). Thinking back
to the application to fuel planning on airplanes, this presents a relieving result. While
individual body weights might vary quite significantly among airplane passengers, the
total weight of all m = 100 passengers will not deviate much from its mean, making safe
estimates of needed fuel possible.

• n = 3 ⇒ 〈yn〉c = 1
m2 〈xn〉c ,

In words, deviations from the normal distribution (which are characterized by the third or
higher-order cumulants, as shown in example 2.11) are very small for large m – this states
the key result of the central limit theorem!
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3 Statistical Mechanics

3.1 Recap: Classical mechanics
Before introducing key concepts of Statistical Mechanics, let us recapitulate some fundamentals
of classical mechanics. Newton’s equation of motion in one dimension is

mẍ(t) = F (x, t) , (3.1)

where the conservative force F can be extracted from a potential V according to

F (x, t) = −∂V (x, t)
∂x

. (3.2)

In terms of the momentum p = mẋ, eqs. (3.1) and (3.2) yield ṗ+ ∂V
∂x = 0 as well as

ṗ = d
dt
(
mẋ(t)

)
= d

dt
∂

∂ẋ

(
mẋ2

2

)

= d
dt
∂T

∂ẋ
,

where T = mẋ2/2 represents the kinetic energy. Thus, we may rewrite the equation of motion
(3.1) as

d
dt
∂T

∂ẋ
+ ∂V

∂x
= 0 . (3.3)

We define the Lagrange function L,

L(x, ẋ) := T (ẋ)− V (x) , (3.4)

and rewrite the equation of motion in terms of L to obtain the Euler-Lagrange equation,

d
dt
∂L(x, ẋ)
∂ẋ

− ∂L(x, ẋ)
∂x

= 0 . (3.5)

Moreover, let us define the action S,

S :=
∫ t1

t0
dt L(x(t), ẋ(t)) . (3.6)

The action is a functional, i.e. a function of a function. For a functional F [x(t)], its functional
derivative1 is defined as

δF [x(·)]
δx(t̃) := F [x(t) + εδ(t− t̃)]− F [x(t)]

ε

∣∣∣∣∣
ε→0

. (3.7)

1For more about functional derivatives, see the Appendix.
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Thus the functional derivative of the action reads

δS[x(·), ẋ(·)]
δx(t̃) =

∫ t1

t0
dt
[
∂L

∂x
δ(t− t̃) + ∂L

∂ẋ

d
dtδ(t− t̃)

]
∗=
∫ t1

t0
dt
[
∂L

∂x
− d

dt
∂L

∂ẋ

]
δ(t− t̃)

= ∂L

∂x(t̃) −
d
dt̃

∂L

∂ẋ(t̃)
!= 0 . (3.8)

Here the step marked by ∗ results from partial integration; in the last line we inserted the
Euler-Lagrange equation. This calculation accords with Hamilton’s principle which states that
a solution of the Euler-Lagrange equation minimizes the action.
The Lagrangian formalism has proven to be very useful for problems with constraints. In

Statistical Mechanics, however, the Hamiltonian formalism turns out more suitable. To switch
from Lagrange to Hamilton, we perform a Legendre transform which replaces ẋ in L by the
momentum p,

p(t) = mẋ(t) = ∂T (ẋ)
∂ẋ

= ∂L(x, ẋ)
∂ẋ

. (3.9)

The Legendre transform yields the Hamilton function H,

H(x, p, t) = ẋp− L(x, ẋ, t) . (3.10)

Note that H does not depend on ẋ. To see this explicitly, let us write down the total differential2
of the Hamilton function,

dH(x, ẋ, p, t) = ∂H

∂x

∣∣∣∣
ẋ,p,t

dx+ ∂H

∂ẋ

∣∣∣∣
x,p,t

dẋ+ ∂H

∂p

∣∣∣∣
x,ẋ,t

dp+ ∂H

∂t

∣∣∣∣
x,ẋ,p

dt

= − ∂L

∂x

∣∣∣∣
ẋ,p,t

dx+ pdẋ− ∂L

∂ẋ

∣∣∣∣
x,p,t

dẋ︸ ︷︷ ︸
=0

+ẋ dp− ∂L

∂t

∣∣∣∣
x,ẋ,p

dt

= dH(x, p, t) . (3.11)

Due to the Legendre transform, the ẋ-dependence cancels3 (the underbraced term vanishes
according to eq. (3.9)) and the three remaining variables are (x, p, t). In general, Legendre
transforms can be used to change independent variables of functions. Eq. (3.11) now leads to

dH(x, p, t) = −ṗ dx+ ẋ dp− ∂L

∂t
dt . (3.12)

A comparison with the general form for the total differential,

dH(x, p, t) = ∂H

∂x

∣∣∣∣
p,t

dx+ ∂H

∂p

∣∣∣∣
x,t

dp+ ∂H

∂t

∣∣∣∣
x,p

dt , (3.13)

yields the Hamilton equations,

∂H
∂p

= ẋ ,
∂H
∂x

= −ṗ , ∂H
∂t

= −∂L
∂t

. (3.14)

2The total differential of a function f(x, y) is defined as df(x, y) = ∂f
∂x

∣∣
y

dx+ ∂f
∂y

∣∣
x

dy.
3Even though ẋ still appears in the total differential (3.11) in the term ẋdp, it is not an independent variable of
H anymore.
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These equations completely specify the dynamics of a system. We can see this by calculating
the total time derivative of the Hamilton function using the chain rule,

dH(x(t), p(t), t)
dt = ∂H

∂x

dx
dt + ∂H

∂p

dp
dt + ∂H

∂t

= −ṗẋ+ ẋṗ+ ∂H
∂t

⇒ dH
dt = ∂H

∂t
. (3.15)

If the potential is constant in time such that the Hamiltonian H is not explicitly time-dependent,
i.e. ∂H

∂t = 0, then H is a conserved quantity. But what is H physically? Returning to the
Legendre transform, we find

H = pẋ− L
= mẋ2 − (T − V )
= 2T − T + V

= T + V . (3.16)

Thus, the Hamiltonian represents the total energy! In a time-independent potential, the total
energy is conserved.
After this brief summary, let us get started with Statistical Mechanics.

3.2 Liouville’s theorem
A gas of N atoms is completely specified by 3N position coordinates q1, . . . , q3N and 3N mo-
mentum coordinates p1, . . . , p3N . These variables constitute a 6N -dimensional coordinate space
termed phase space, or Γ-space. A point in phase space defines a microstate. It moves according
to the canonical Hamilton equations,

q̇i(t) = ∂H(q3N , p3N )
∂pi

(3.17)

ṗi(t) = −∂H(q3N , p3N )
∂qi

, (3.18)

where i = 1, . . . , 3N (6N equations) and q3N abbreviates q1, q2, . . . , q3N . Typically, we assume
that H depends only on q3N and p3N , not on time t, ṗ, etc. Then,

dH
dt = ∂H

∂t
= 0 .

As shown in the previous section, this implies conservation of total energy H. Therefore, with
given initial conditions, eqs. (3.17) and (3.18) uniquely determine q3N (t) and p3N (t) for all times
t. This also means that q̇3N (t) and ṗ3N (t) are unique, which brings about the consequence that
trajectories in phase space never cross. Indeed, if a trajectory would cross itself in a certain
point, there would exist two different ways to move on from that point – in contradiction with
the uniqueness of solutions. Closed curves, however, are possible and describe periodic motion.
In Statistical Mechanics, where we deal with large systems, following 6N coordinates around

is neither feasible nor worthwhile; it’s just too much information. But we don’t need all details
because not all microstates have distinct physical characteristics. Imagine, for example, a gas
composed of N identical particles. Then all N ! possible permutations describe identical systems
but represent different points in phase space! Many microstates are equivalent and lead to the
samemacroscopic properties such as temperature, pressure, total energy, etc. In other words, one
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macrostate characterized by these “coarse-grain” quantities can be realized by a vast number
of microstates. This motivates a probabilistic description of the problem. We assign each
microstate a probability ρ(q3N , p3N , t). The probability density can be normalized such that∫

d3Nq d3Np ρ(q3N , p3N , t) = 1 , (3.19)

where, in short notation, d3Nq = dq1 · · · dq3N . Thus, we may calculate the expectation value of
any observable A, e.g. pressure or internal energy, according to

〈A(t)〉 =
∫

d3Nq d3Np A(q3N , p3N ) ρ(q3N , p3N , t) . (3.20)

A probability distribution ρ in phase space is also called an ensemble, and the expectation value
in eq. (3.20) is sometimes termed ensemble average. We may think of an ensemble as a collection
of “mental copies” of the given system, each of which represents a possible microstate the system
could be in under the constraints of a given macrostate. This powerful interpretation, introduced
by Gibbs, sets the conceptual foundation for much of what will follow in this lecture. We will
discuss different types of ensembles soon.
What are the properties of the density distribution ρ, and how does it evolve in time? A

microstate (q3N , p3N ), with probability ρ(q3N , p3N , t) at time t, moves along a completely deter-
mined trajectory according to the canonical Hamilton equations (3.17), (3.18). Since probability
is conserved over time when integrating over the entire phase space (there are no sources or sinks
of microstates), ρ must obey a so-called conservation or balance equation. Consider a fixed vol-
ume Ω in phase space: the change in probability ρ integrated over Ω must be balanced by a
probability flux through the surface S(Ω) of the volume Ω. In mathematical terms, we write
this as

− d
dt

∫
Ω

d3Nq d3Np ρ(q3N , p3N , t) =
∫
S(Ω)

ds ~n(s) · ~v(s)ρ(s, t) , (3.21)

where ~v(s) = (q̇1, . . . , q̇3N , ṗ1, . . . , ṗ3N ) denotes the 6N -dimensional velocity in phase space, s
is the surface element, and ~n(s) denotes the surface normal on S (pointing outwards). Using
Gauss’s theorem, sometimes referred to as the divergence theorem, we rewrite eq. (3.21) as

−
∫

Ω
d3Nq d3Np

∂

∂t
ρ(q3N , p3N , t) =

∫
Ω

d3Nq d3Np ~∇ ·
(
~v(q3N , p3N ) ρ(q3N , p3N , t)

)
. (3.22)

Here ~∇ represents the 6N -dimensional gradient operator,

~∇ =
(
∂

∂q1
, . . . ,

∂

∂q3N
,
∂

∂p1
, . . . ,

∂

∂p3N

)
.

Note that we could pull the time derivative inside the volume integral since we assume that Ω
remains fixed in time. Rearranging eq. (3.22), we get∫

Ω
d3Nq d3Np

(
∂

∂t
ρ(q3N , p3N , t) + ~∇ ·

(
~v(q3N , p3N ) ρ(q3N , p3N , t)

))
= 0 . (3.23)

We may choose the time-independent volume Ω arbitrarily, which implies that eq. (3.23) is only
true for any test volume Ω if the integrand vanishes. This requirement results in an equation of
continuity for the ρ,

−∂ρ
∂t

= ~∇ · (~vρ)

=
3N∑
i=1

[
∂

∂qi
(q̇iρ) + ∂

∂pi
(ṗiρ)

]

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi
+ ρ

(
∂q̇i
∂qi

+ ∂ṗi
∂pi

)
︸ ︷︷ ︸

=0

]
, (3.24)
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where we know from the Hamilton equations (3.17), (3.18) that the underbraced term must
vanish:

∂q̇i
∂qi

+ ∂ṗi
∂pi

= ∂

∂qi

∂H
∂pi
− ∂

∂pi

∂H
∂qi

= 0 ,

according to Schwarz’s theorem about the symmetry of partial derivatives. This leads to the
Liouville equation,

−∂ρ(q3N , p3N , t)
∂t

=
3N∑
i=1

[
q̇i
∂

∂qi
+ ṗi

∂

∂pi

]
ρ . (3.25)

Defining the Liouville operator L̂ := ∑3N
i=1

[
q̇i

∂
∂qi

+ ṗi
∂
∂pi

]
, we may write this compactly as4

−∂ρ
∂t

= L̂ρ . (3.26)

The Liouville equation describes how ρ changes in time at a fixed position in phase space
(q1, . . . , q3N , p1, . . . , p3N ) (Eulerian description). We might ask ourselves: how does ρ evolve in
time when we “go with the flow” by moving along with the trajectory as it moves through phase
space (Lagrangian description)? Using the chain rule, we find that

dρ(q3N (t), p3N (t), t)
dt = ∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi

dqi
dt + ∂ρ

∂pi

dpi
dt

)
= ∂ρ

∂t
+ L̂ρ

⇒ dρ
dt = 0 . (3.27)

This is Liouville’s theorem. It states that the density ρ is (locally) constant when moving
along a trajectory through phase space. Essentially, ρ propagates through phase space like an
incompressible fluid.

3.3 Postulate of equal a priori probability

If we imagine that a trajectory visits every point in phase space compatible with energy conser-
vation (H = const.), then the Liouville theorem tells us that

ρ(~q, ~p, t) =
{
const. U ≤ H(~q, ~p) ≤ U + ∆
0 otherwise.

(3.28)

Here we allow the total energy H to lie in a small interval [U,U + ∆] to comply with the
uncertainty principle. According to this argument – which only assumes that a trajectory may,
in principle, visit every point in phase space without crossing itself –, every possible microstate
which results in total energy U is equally probable. In other words, a system with total energy
U is equally likely to be in any of the compatible microstates. This defines the microcanonical
ensemble, which we will discuss in further detail soon. Since the total energy is fixed, the
microcanonical ensemble describes an isolated system.

4As a side remark, we mention that the Liouville operator may be used to formally solve the Liouville equation
(3.25). Given an initial distribution ρ(~q, ~p, 0), the solution is ρ(~q, ~p, t) = exp

[
−L̂t

]
ρ(~q, ~p, 0). This is an

extremely powerful method, since it provides an exact solution of the many-body problem!
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Remark. If we more generally consider an ensemble where different energies are populated with
different probabilities, that is,

ρ(~q, ~p, t) = ρ(H(~q, ~p), t) , (3.29)

then the Liouville equation tells us that

−∂ρ(~q, ~p, t)
∂t

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]

=
3N∑
i=1

[
∂H
∂pi

∂ρ

∂H
∂H
∂qi
− ∂H
∂qi

∂ρ

∂H
∂H
∂pi

]
= 0 , (3.30)

where we have used the chain rule. This implies that ρ cannot be explicitly time-dependent:

ρ(H(~q, ~p), t) = ρ(H(~q, ~p)) . (3.31)

Consequently, a distribution that depends on the Hamiltonian only and not on phase space
variables directly is stationary. This statement is true for arbitrary systems and for a general
Hamiltonians H(~q, ~p).

3.4 Concepts of entropy and temperature
The “number” of microstates within the energy range U < H(~q, ~p) < U + ∆ is given by the
volume integral

Γ(U, V,N) =
∫
U<H<U+∆

d3Nq d3Np 1 , (3.32)

which quantifies the allowed volume in phase space of a system with that energy. This relates
to the density of states: the total number of states with any energy H below U is

Σ(U) =
∫
H<U

d3Nq d3Np 1 . (3.33)

Thus, we may write the number of allowed microstates Γ as

Γ(U) = Σ(U + ∆)− Σ(U)
≈ Σ(U) + ∆Σ′(U)− Σ(U)
= ∆Σ′(U) , (3.34)

where we used the Taylor approximation up to first order, assuming that ∆ � U . Based on
this, we define the density of states ω(U) for a certain energy U as

ω(U) := lim
∆→0

Γ(U)
∆ = Σ′(U) , (3.35)

Σ(U) =
∫ U

−∞
dU ′ ω(U ′) . (3.36)

Two Coupled Systems. Consider now an isolated system, characterized by fixed total energy
U , particle number N , and volume V . Imagine that we insert a dividing plane which divides
the system into two subsystems. The dividing plane lets energy pass from one side to the
other; however, neither particles nor volume may pass through. Thus, subsystems 1 and 2 have
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fixed particle numbers N1, N −N1 as well as fixed volumes V1, V − V1 but fluctuating energies
U1, U − U1 under the constraint U1 ≤ U (see fig. 3.1).

U1

V1

N1

U − U1

V − V1

N −N1

Figure 3.1: Two coupled subsystems isolated from the environment

The total number of microstates Γ for the compound system at energy U is calculated as

Γ(U, V,N) =
∫

dU1 Γ1(U1) · Γ2(U − U1) . (3.37)

Note that for a fixed energy U1, the number of microstates Γ of the total system equals the
product Γ1 · Γ2 of the number of microstates of the subsystems. This is founded upon the
multiplication theorem (see eq. (2.3)). Since the subsystems may exchange energy, we must
furthermore integrate over all possible energies U1 (from 0 to U).
Let us now introduce a new function which we label S(U). The reason why we do this will

become clear later; it will turn out that S represents the entropy in Thermodynamics. We define

S(U)
kB

:= ln(Γ(U)) . (3.38)

Let us use this function to explore our example of a compound system further. Inserting eq.
(3.37) for Γ(U), we obtain

S(U)
kB

= ln
(∫

dU1 e
[S1(U1)+S2(U−U1)]/kB

)
. (3.39)

Assuming that the integrand has a maximum at energy U∗1 , the sum S1 + S2 is also maximal
at U∗1 because the exponential is a monotonic equation. Therefore, we may Taylor expand the
sum around its maximum,

S1(U1) + S2(U − U1) ≈ S1(U∗1 ) + S2(U − U∗1 )
+ (U1 − U∗1 )

[
S′1(U∗1 )− S′2(U − U∗1 )

]︸ ︷︷ ︸
=0

+ (U1 − U∗1 )2

2
[
S′′1 (U∗1 ) + S′′2 (U − U∗1 )

]
+ . . . , (3.40)

where the first derivative vanishes at the maximum. Re-inserting the Taylor series up to second
order into eq. (3.39) yields

S(U)
kB

= ln
(
e[(S1(U∗1 )+S2(U−U∗1 )]/kB

∫
dU1 e

(U1−U∗1 )2[S′′1 (U−U∗1 )+S′′2 (U−U∗1 )]/(2kB)
)
.
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Here we have pulled the U1-independent part in front of the integral. The integral itself is
a Gaussian integral for which the solution is known:

∫
dx e−a(x+b)2 =

√
π/a. Performing the

integral, we find

S(U) = S1(U∗1 ) + S2(U − U∗1 ) + kB ln
√
− 2πkB
S′′1 (U∗1 ) + S′′2 (U − U∗1 ) , (3.41)

where we assume that S′′1 (U1∗) +S′′2 (U −U∗1 ) < 0 (which will be shown to hold true). From this
result we may draw several fundamental conclusions:

• The function S(U) is extensive. This means that the entropy of the total system equals
the sum of the individual entropies of the subsystems. In other words, S(U) is proportional
to the system size N . This statement is true because in fact the square root term in eq.
(3.41) becomes negligible for large N . To see this, imagine that each particle in a system
contributes an equal share of entropy to the entropy S of the whole system, such that
S = Ns, where the lower-case s denotes the per-particle entropy. We can similarly define
a per-particle energy u such that U = Nu (s and u are independent of N). This implies

d2S(U)
dU2 = d2Ns(u)

d(Nu)2 = 1
N

d2s(u)
du2 ⇒ S′′(U) ∼ 1

N
.

Thus, the second derivative of S(U) scales like 1/N , and the square root term consequently
scales according to

kB ln
√
− 2πkB
S′′1 (U∗1 ) + S′′2 (U − U∗1 ) ∼ ln

√
N .

For large N , we have N � ln
√
N , such that the square root term approaches zero and

S(U) is an extensive function, i.e.,

S(U) = S1(U∗1 ) + S2(U − U∗1 ) . (3.42)

Eq. (3.42) is exact in the thermodynamic limit (N →∞).
In Thermodynamics, we generally distinguish between extensive quantities which scale
with the system size N and intensive quantities which are independent of N . Other
examples of extensive variables include the total system the volume V , energy U , and
obviously N . Contrarily, the temperature T or pressure P belong to the intensive variables.

• In equilibrium, S(U) is maximal. The function S(U) ≈ S1(U∗1 )+S2(U−U∗1 ) is maximized
with respect to the free variable U1. Since S relates to the phase space volume via (3.38),
maximizing S also maximizes Γ. Therefore, the composite system automatically goes to the
state where U1 = U∗1 because this is the most probable one in equilibrium. This corresponds
to the Second Law of Thermodynamics: in equilibrium, the entropy S is maximal with
respect to all “free” variables (under all constraints imposed by the macrostate).

• Systems in contact exchange energy until equilibrium. In equilibrium, where the energy
of subsystem 1 has reached U1 = U∗1 , we find that S′(U) is the same for both subsystems:

dS1(U∗1 )
dU∗1

= dS2(U∗2 )
dU∗2

,

where U∗2 = U −U1∗. This suggests that in equilibrium the derivative S′ takes a constant
value, which we define as

1
T

:= dS(U)
dU . (3.43)
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You may have heard of T ; in Thermodynamics it is called temperature. We deduce that
systems in thermal contact must have the same temperature (after sufficient time, when
equilibrium is reached). Otherwise, if two systems in thermal contact would not have the
same temperature, they would exchange energy until the two derivatives dS1/dU∗1 and
dS2/dU∗2 are the same. This corresponds to the Zeroth Law of Thermodynamics.

3.5 Canonical ensemble
As in the previous section, let us consider two systems in thermal contact (fig. (3.1)). Their
combined energy U , particle number N , and volume V are fixed. The particle number and
volume of system 1, N1 and V1, are also fixed. However, the systems may exchange energy, such
that U1 may fluctuate. Once again, the “number” of microstates for a given energy U1 is given
by the multiplication theorem,

Γ(U,U1) = Γ1(U1) · Γ2(U − U1) . (3.44)

We now argue the following. If a microstate of system 1 allows for relatively many microstates
of the composite system, then that microstate of system 1 will have a relatively high probability.
In other words, the number of microstates of the composite system per microstate of system 1
equals the (non-normalized) probability of that microstate of system 1:

ρ(U1, N1, V1) = Γ(U1, V1, N1) · Γ(U − U1, V − V1, N −N1)
Γ(U1, V1, N1)

= Γ(U − U1, V − V1, N −N1)

= exp
[ 1
kB
S(U − U1, V − V1, N −N1)

]
= exp

[
1
kB
S(U)− U1

kB
S′(U) + U2

1
2kB

S′′(U) + . . .

]
, (3.45)

where ρ is the non-normalized probability distribution of system 1. Here we used eq. (3.38) and
expanded S(U −U1, V − V1, N −N1) around U1 = 0. Let us now assume that system 2 is much
larger than system 1, i.e. N2 = N − N1 � N1, V2 = V − V1 � V1, and U2 = U − U1 � U1.
Then, the second-order term of the Taylor expansion is negligible because

U2
1

2kB
∂2S(U)
∂U2 ∼ N2

1
N
→ 0 (N1 � N) .

Similar arguments hold for higher-order terms of the expansion. Furthermore, we know from
the previous section that

dS(U)
dU = 1

T
,

where T is the temperature. Inserting this into eq. (3.45), we obtain the Boltzmann distribution,

ρ(U1) ∝ exp
[
− U1
kBT

]
. (3.46)

Here we simply discarded the constant factor eS(U)/kB coming from the zeroth order of the
expansion in eq. (3.45), as the distribution is not normalized anyway.
Above we assumed that system 2 is much larger than system 1, such that N − N1 ≈ N .

In that case, we call system 2 a reservoir or heat bath – a system which is so large that its
extensive properties like N,V, U essentially do not change when put in contact with a small
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system like system 1. The Boltzmann distribution, sometimes termed canonical distribution,
thus gives the probability distribution for a closed system that may exchange energy with a
reservoir. It defines the so-called canonical ensemble which is characterized by the macroscopic
variables N,V, T . The fixed temperature T of the reservoir controls the energy of the closed
system. All states are possible, even states with extremely high energy U1, but they will be
extremely unlikely unless the heat bath is very, very hot.

Expectation values and variances. We now want to calculate the mean energy and its variance
for a system governed by the canonical distribution ρ(Ui). Let us suppose the system has discrete
states i with energy Ui. Then the expectation value reads

〈U〉 =
∑
i Ui ρ(Ui)∑
i ρ(Ui)

=
∑
i Uie

− Ui
kBT∑

i e
− Ui
kBT

. (3.47)

It is convenient to define β := 1
kBT

for increased simplicity. In terms of β, we write

〈U〉 =
∑
i Uie

−βUi∑
i e
−βUi

=
− ∂
∂β

∑
i e
−βUi∑

i e
−βUi

= − ∂

∂β
ln
(∑

i

e−βUi

)
, (3.48)

where, in the final step, we have used the chain rule “backwards” to arrive at the logarithm.
Thus, the expectation value of the energy in the canonical ensemble is given by

〈U〉 = − ∂

∂β
lnZ , Z =

∑
i

e−βUi . (3.49)

Here we introduced the partition function Z. It states the sum of Boltzmann weights e−βUi over
all microstates. The partition function is the central object in statistical mechanics; it allows to
calculate any expectation values, variances, etc. by means of suitable derivatives. To obtain the
variance of the energy, for example, we calculate

∂2

∂β2 ln(Z) = − ∂

∂β
〈U〉

= − ∂

∂β

(∑
i Uie

−βUi∑
i e
−βUi

)

=
∑
i U

2
i e
−βUi∑

i e
−βUi

+
∑
i Uie

−βUi

(∑i e
−βUi)2

∂

∂β

∑
i

e−βUi

=
∑
i U

2
i e
−βUi∑

i e
−βUi

− (∑i Uie
−βUi)2

(∑i e
−βUi)2

= 〈U2〉 − 〈U〉2 = ∆U2 . (3.50)

Connection to Thermodynamics. The expectation value of the energy 〈U〉, as derived here
from Statistical Mechanics, is a macroscopic observable that we would also deal with in Ther-
modynamics. How does the variance, which describes deviations from the mean, connect to
Thermodynamics?

29



Remembering that β depends on the temperature T , the variance can be written as

〈U2〉 − 〈U〉2 = ∂

∂β
〈U〉

= −∂T
∂β

∂

∂T
〈U〉

= − ∂

∂β

1
kBβ

∂

∂T
〈U〉

= kBT
2 ∂

∂T
〈U〉 . (3.51)

Moreover, we introduce the heat capacity CV at constant volume as the derivative of energy by
temperature,

CV = ∂ 〈U〉
∂T

∣∣∣∣
V,N

. (3.52)

The heat capacity quantifies how the system’s energy increases with increasing temperature.
More specifically, it states the amount of heat needed to increase the temperature by one Kelvin.
CV is always positive and extensive; we need to double the heat to warm up double the amount!
Example 3.1 (Heating water). At 15◦C, the specific heat capacity of water is CV = 4.2 kJ

kg K ·m,
where m denotes the water mass in kilograms. So to heat up 1 kg of water from T = 0◦C (273
K) to T = 100◦C (373 K), we need roughly 420 kJ of energy (CV is temperature-dependent). A
1000 W heater adds 1 kJ per second and would thus take 7 minutes to boil freezing water. In
comparison, the same amount of energy would suffice to lift up a weight of 1 kg by 42 kilometers
(1 kg excerts 10 N, 1 J=1 N·m, 420 kJ=10 N · 42 km). This demonstrates that heat is costly!
Coming back to the variance, we now combine eqs. (3.51) and (3.52) to obtain

〈U2〉 − 〈U〉2 = kBT
2CV . (3.53)

Accordingly, energy deviations are given by

∆U =
√
〈U2〉 − 〈U〉2 = T

√
kBCV , (3.54)

and the relative energy deviations become

∆U
U

= T
√
kBCv
U

∼
√
N

N
∼ 1√

N
→ 0 (N →∞) . (3.55)

Once again, this result reflects the law of large numbers: as N → ∞, relative deviations in
the energy approach zero. In the thermodynamic limit, the canonical ensemble (where the en-
ergy may fluctuate) and the microcanonical ensemble (where the energy is fixed) are equivalent
because fluctuations around the mean vanish. Thermodynamics does not know about these
fluctuations, but Statistical Mechanics does! Variances are determined by response functions
(Fluctuation-dissipation theorem).

Concept of free energy. We have introduced the canonical partition function Z(T, V,N) =∑
i e
−βHi , where β = 1

kBT
and the index i sums over all microstates. Calculating or approxi-

mating this sum is difficult. Therefore, we look for an expression of the partition function which
circumvents the explicit summation over microstates. Let us insert unity, i.e.

1 =
∫ ∞
−∞

dU δ(U −Hi) , (3.56)
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into the expression of the partition function:

Z =
∑
i

∫ ∞
−∞

dU δ(U −Hi)e−βHi

=
∫ ∞
−∞

dU
∑
i

δ(U −Hi)e−βU

=
∫ ∞
−∞

dU ω(U)e−βU

=
∫ ∞
−∞

dU elnω(U)−βU . (3.57)

Here ω(U) := ∑
i δ(U −Hi) denotes the density of states, which we may interpret as the number

of states with energy U . To verify this, consider the following “intuitive proof.” The total
number of states with energy Hi < U is given by the function Σ(U, V,N), and should likewise
be found by summing 1 over all possible states. Using eq. (3.36), we show that5

Σ(U) =
∫ U

−∞
dU ′ ω(U ′)

=
∫ U

−∞
dU ′

∑
i

δ(U ′ −Hi)

=
∑
i

Hi<U

∫ ∞
−∞

dU ′ δ(U ′ −Hi)

=
∑
i

Hi<U

1 , (3.58)

as required. In section 3.4, we defined the entropy S(U) as

S(U)
kB

:= ln Γ(U) = ln(ω(U)∆)

⇒ S(U)
kB

= lnω(U) + ln ∆︸︷︷︸
→0

.

Here we simply discard the non-extensive constant ln ∆, which becomes irrelevant for large N .
Now, inserting lnω(U) = S(U)/kB into eq. (3.57), the partition function reads

Z =
∫ ∞
−∞

dU e−β[U−TS(U)] . (3.59)

We define F := U − TS(U), yielding

Z =
∫ ∞
−∞

dU e−βF (U) =
∫ ∞
−∞

dU ρ(U) , F = U − TS . (3.60)

This expression does not include a sum over all microstates anymore. The partition function
is now given in terms of the free energy F , which is the relevant potential in the canonical
ensemble.
To learn more about the free energy, let us Taylor expand F around the most probable energy

5Don’t get confused with the function Σ and the sum
∑

i
.
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U∗, as we did earlier with the entropy S. For the first derivate evaluated at U∗, we find

dF (U)
dU

∣∣∣∣
U∗

= d
dU (U − TS(U))

∣∣∣∣
U∗

= 1− T dS(U)
dU

∣∣∣∣
U∗

= 1− T 1
T

= 0 . (3.61)

The fact that the first derivative vanishes implies that the most probable energy U∗ also ex-
tremizes the free energy F . Note that we deal with two kinds of temperatures here. We must
distinguish between the temperature of the reservoir, T = T (U∗), which is independent of U ,
and the temperature of the canonical system, Tcan = T (U). In thermal equilibrium (at U∗),
both temperatures coincide and we simply denote them by T . Let us also calculate the second
derivative,

d2F (U)
dU2

∣∣∣∣∣
U∗

= −T d2S(U)
dU2

∣∣∣∣∣
U∗

= −T d
dU

1
T (U)

∣∣∣∣
U∗

= T

T 2(U)
dT (U)

dU

∣∣∣∣
U∗

= T

T 2(U)

(dU
dT

)−1
∣∣∣∣∣
T (U∗)

= 1
T · CV

∼ 1
N
> 0 . (3.62)

The inequality in the last line holds for any substance; energy must be added to raise the
temperature. We draw the following conclusions from the preceding investigation.

• The most probable energy U∗ is determined by the extremum of the free energy F where
dF
dU

∣∣∣
U∗

= 0. At this energy, the temperature of the canonical system coincides with the

temperature T of the reservoir: dS
dU

∣∣∣
U∗

= 1
T .

• We know that the most probable energy U∗ exists because d2F
dU2

∣∣∣
U∗

> 0. This result also

implies, together with dF
dU

∣∣∣
U∗

= 0, that F has a minimum at U∗.

• The variance of the energy, 〈(U − U∗)2〉 ≈ CV ∼ N is extensive.

• The relative variance becomes negligible for large N :
〈(

U
U∗ − 1

)2
〉
∼ 1

N → 0 (N →∞).

• We have shown that d2S
dU2 < 0, as used in the derivation of the entropy as an extensive

function (see sec. 3.4). Thus, the curvature of the entropy is positive. The most probable
state of the system is characterized by a balance between minimizing the energy and
maximizing the entropy. At this equilibrium point, the free energy is minimal.

Since the relative variance of the energy U approaches zero for very large N , the distribution
of energies is sharply peaked at the dominating energy U∗. In the thermodynamic limit, in fact,
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energies other than U∗ become irrelevant; the distribution approaches a δ-distribution. For the
partition function Z this means

Z =
∫

dU e−βF (U) N→∞= e−βF (U∗) . (3.63)

Rearranging this equation for F yields

F = −kBT lnZ . (3.64)

Though derived in the thermodynamic limit, this result for the free energy F also holds for
finite N . The mean energy 〈U〉 = U∗ can by obtained by the following recipe: We combine
βF = − lnZ (eq. (3.64)) with the previously established result

〈U〉 = −∂ lnZ
∂β

=
∫

dU Ue−βF (U)∫
dU e−βF (U)

=
∫

dU Ue−βU+S(U)/kB∫
dU e−βU+S(U)/kB

to obtain

〈U〉 = ∂(Fβ)
∂β

= F + β
∂F

∂β
= F + 1

kBT

∂T

∂β

∂F

∂T
. (3.65)

The derivative ∂T/∂β is the reciprocal of

∂β

∂T
= ∂(1/(kBT ))

∂T
= − 1

kBT 2 ,

such that 〈U〉, often simply written as U while tacitly referring to the mean value, becomes

U = F − T ∂F
∂T

, F = U − TS

⇒ ∂F

∂T
= −S . (3.66)

The boxed equation states an important thermodynamic relation between free energy and en-
tropy. Another central relation that we already know is ∂S/∂U = 1/T (eq. (3.43)).
In the canonical ensemble, the equilibrium energy U ≡ 〈U〉 = U∗ is a function of the tem-

perature of the reservoir, U(T ). Therefore, functions like entropy or the free energy depend on
temperature T , particle number N , and volume V :

S = S(T, V,N) , F = F (T, V,N) , U(T, V,N) , Z(T, V,N) , . . .

3.6 Examples of the canonical distribution

3.6.1 Velocity distribution of ideal gas atoms

The Hamiltonian of a gas is given by

Htot =
N∑
i=1

~p2
i

2m +
N∑
i=1

V (~qi) +
N∑
i=1

N∑
j=i+1

V2(~qi~qj) (3.67)
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The first term is the kinetic energy. The second term describes the potential energy due to
an external potential. Finally, the third term represents two-body-interactions between gas
particles. In the ideal gas, however, particle-particle interactions are neglected; it is assumed
that a gas atom moves without being influenced by other gas atoms. Thus, the Hamiltonian for
the ideal gas becomes

Htot =
N∑
i=1

(
~p2
i

2m + V (~qi)
)

(3.68)

The partition function is given by

Z =
∫ ∞
−∞

d~p1 . . . dpN

∫
V
d~q1 . . . ~qiqe

−βHtot (3.69)

Z =
[∫

d~pe−β
~p2
2m

∫
d~qe−β

~V (~q)
]N

= ZN1 (3.70)

Here Z1 is the single particle partition function. It can be seen that the ideal many-body
partition function factorizes into the single-particle partition function. The kinetic energy of
one gas atom is Ekin = p2

2m = p2
x+p2

y+p2
z

2m . For an isotropic system the expectation values of the
momenta are equal: 〈p2

x〉 = 〈p2
y〉 = 〈p2

z〉. Each of them can be written as

〈
p2
x

2m

〉
=
∫
dpx

p2
x

2me
−β p

2
x

2m∫
dpxe

−β px
2

2m

= −∂
∂β

ln
(∫

dpxe
−β p

2
x

2m

)

= −∂
∂β

ln
√

2πm
β

= ∂

∂β

1
2 ln β

= 1
2β

= kBT

2 (3.71)

Thus, the kinetic energy of one coordinate is kBT2 . This generalizes into the equipartition theorem.
It states that for a degree of freedom x described by a quadratic energy H = αx2, the average
energy is 〈H〉 = kBT/2. For a system with f degrees of freedom this means

U = 〈H〉 = f

2 kbT . (3.72)

In the ideal gas, each atom has three degrees of freedom (x,y,z). Therefore, each atom has the
kinetic energy of

Ekin = 3
〈
p2
x

2m

〉
(3.73)

= 3
2kBT (3.74)

For N atoms this becomes

Ekin = 3N
2 kBT = U (3.75)
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The heat capacity is constant as a function of temperature:

C = dU

dT
= fkB

2 (3.76)

For a monatomic gas f = 3N and for a diatomic gas f = (6 + 1)N (6 momenta and 1 distance
coordinate). Since kBT at T = 300K is 4 · 10−21 J, the kinetic energy of a gas atom at room
temperature is a very small. The velocity can be calculated by setting the energy equal to the
formula for the kinetic energy.

3
2kBT =

〈
mv2

2

〉
(3.77)

〈
v2
〉

= 3kBT
m

(3.78)√
〈v2〉 = 460ms (3.79)

So the velocity is very high: of the order of the speed of sound. The expectation value of the
velocity 〈v〉 = 0 vanishes, however. Otherwise the gas as a whole would move in a certain
direction!

3.6.2 Maxwell-Boltzmann distribution

The un-normalised distribution of one velocity component vx is, according to the Boltzmann
distribution, given by

ρvx ∝ e−
p2xβ
2m (3.80)

∝ e−
βmv2

x
2 . (3.81)

The expectation value of the second moment of ~v is

〈
~v2
〉

=
∫
d~v~v2ρ(~v)∫
d~vρ(~v) (3.82)

=
∫
dvxdvydvzv

2e−
mβ(v2

x+v2
y+v2

z)
2

· · ·
(3.83)

=
∫∞
0 dv4πv2v2e−

mβv2
2∫∞

0 dv4πv2e−
mβv2

2m

(3.84)

=
∫∞
0 dvv2v2e−

mβv2
2∫∞

0 dvv2e−
mβv2

2m

(3.85)

≡
∫ ∞

0
dvv2ρMB (v) . (3.86)

Here ρMB (v) denotes the Maxwell-Boltzmann distribution which is given by

ρMB (v) = v2e−
mβv2

2 · 4π
(
mβ

2π

)− 3
2

(3.87)
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since ∫ ∞
0

dvv2e−
mβv2

2 = 1
2

∫ ∞
−∞

dvv2e−
mβv2

2 (3.88)

= −1
2

d

d(mβ/2)

∫ ∞
−∞

dve−
mβv2

2 (3.89)

= −1
2

d

d(mβ/2)

( 2π
mβ

) 1
2

(3.90)

= 1
2π

1
2

1
2

(
mβ

2

)− 3
2

(3.91)

= π
1
2

4

( 2
mβ

) 3
2

(3.92)

= 1
4π

(2πkBT
m

) 3
2
. (3.93)

The maximum of ρMB (v) is at

dρMB (v)
dv2 = 4π

(
mβ

2π

) 3
2
(
e−

mβv2
2 − v2mβ

2 e−
mβv2

2

)
(3.94)

v2
max = 2

mβ
(3.95)

= 2kBT
m

. (3.96)

Compared with equation (3.78) this yields〈
~v2〉
~v2

max
= 3

2 . (3.97)

So the mean and the maximum are not the same. In other words, the average velocity does not
coincide with the most probable velocity. The law of large numbers does not apply here because
the Maxwell-Boltzmann distribution describes a single-particle property and is independent of
N .

3.6.3 Barometric Height Formula
Close to the ground of the earth the total Hamiltonian for N gas atoms is

Htotal =
N∑
i=1

~p2
i

2m +mgzi. (3.98)

Here g ≈ 9.81 m
s2 is the acceleration due to gravity. The momentum and position distribution

factorises, so the height distribution of one atom is
ρ(z) = e−βmgz (3.99)

and with that the expectation value for the height z is

〈z〉 =
∫∞

0 dzze−βmgz∫∞
0 dze−mgz

= − d

d(βmg)

∫ ∞
0

dze−βmgz

= − d

d(βmg) ln
( 1
βmg

)
= 1
βmg

(3.100)
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For a nitrogen atom at around 0°C this yields an average height of around 15 km above the
surface of the earth. If anything, this is merely a rough approximation of the height of the
atmosphere, as β = 1/(kBT ) is not at all constant across different heights and, furthermore, g
decreases with height.

3.7 Ideal Gas in the Canonical Ensemble
The partition function for an ideal gas of N identical mono-atomic gas particles in a volume V
is given by

Z(N,V, T ) = 1
N !Π

N
j=1

[ 1
h3

∫
d3pj

∫
V
d3qj

]
e−βH(p3N ,q3N ) (3.101)

• The pre-factor 1
N ! avoids over-counting of micro-states due to permutation of indices. This

avoids the Gibbs paradox of a non-extensive entropy.

• h is Planck’s constant and has units of an action (Js). It makes the integral over phase
space and thus Z itself unitless. For all physical observables, the value of h is not important
since F = −kBT ln(Z).

• The (inverse) pre-factor (N !h3) follows from quantum statistics.

• For an ideal gas H(p3N , q3N ) = ∑N
i=1

~p2
i

2m and there is no dependence on ~qi for an ideal gas,
while the finite volume V enters via the integration boundaries.∫

V
d3qi =

∫ L

0
dqxi

∫ L

0
dqyi

∫ L

0
dzi 1 (3.102)

= L3 (3.103)
= V (3.104)

• Clearly Z depends on the thermodynamic parameters N,T, V so the partition function
has variables Z(T, V,N) as well as the free energy F (T, V,N).

Z = 1
N !Π

N
j=1

[ 1
h3

∫
d3pj

∫
V
d3qj

]
e−β

∑N

i=1
~p2
i

2m (3.105)

= 1
N !

[ 1
h3

∫
d3pe−β

~p2
2m

∫
V
d3q

]N
(3.106)

= 1
N !

(
V

h3

)N [∫ ∞
−∞

dpe−β
p2
2m

]3N
(3.107)

= 1
N !

(
V

h3

)N
(2πmkBT )

3N
2 (3.108)

= 1
N !

(
V

λ3
t

)N
(3.109)

λt = h√
2πmkBT

(3.110)

Here λt is the de Broglie wavelength at temperature T . The free energy follows as

F = −kBT ln(Z) (3.111)

= kBTN ln
(
λ3
t

V

)
+ kBT ln(N !) (3.112)
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Using the Stirling approximation this yields

≈ kBTN
[
ln
(
Nλ3

t

V

)
− 1

]
(3.113)

The free energy F is extensive and scales like N . Without the factorial in the definition of Z,
the free energy would be proportional to N ln(N). Now other state variables can be calculated
from F .

F (N,T, V ) = kBTN

[
ln
(
N

V
h3 (2πmkBT )−

3
2

)
− 1

]
(3.114)

= kBTN

[
ln
(
N

V
h3
)
− 3

2 ln (2πmkBT )− 3
2 ln (T )− 1

]
(3.115)

−S = ∂F

∂T
(3.116)

= F

T
− 3

2kBN (3.117)

S = −F
T

+ 3
2kBN (3.118)

= −kBN
[
ln
(
N

V
λ3
t

)
− 1

]
+ 3

2kBN (3.119)

= −kBN
[
ln
(
N

V
λ3
t

)
− 5

2

]
(3.120)

F = U − TS (3.121)
U(N,T, V ) = F + TS (3.122)

= 3
2NkBT (3.123)

= U(T,N) (3.124)

So the internal energy of the ideal gas does not depend on the volume V .

−∂F
∂V

= kBTN

V
(3.125)

≡ P (T, V,N) (3.126)

This is called the thermal equation of state of the ideal gas. And the total differential of the
free Energy dF can be written down.

dF = ∂F

∂T

∣∣∣∣
V,N

dT + ∂F

∂V

∣∣∣∣
T,N

dV + ∂F

∂N

∣∣∣∣
V,T

dN (3.127)

For N = const. this becomes

dF = −S(T, V,N)dT − P (T, V,N)dV (3.128)

furthermore with U = F + TS this becomes

dU = −SdT − PdV + TdS + SdT (3.129)
dU = −PdV + TdS (3.130)

= −P (V, S)dV + T (V, S)dS. (3.131)
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To summarise

P = −∂U
∂V

(3.132)

T = ∂U

∂S
(3.133)

1
T

= ∂S

∂U
(3.134)

3.7.1 First law of Thermodynamics in Differential Form

The total differential of U corresponds to the first law of thermodynamics.

dU(S, V ) = TdS − PdV (3.135)
dU(S, V ) = ∆Q−∆W (3.136)

Here ∆W = PdV is the mechanical work done by the gas and ∆Q = TdS is the heat transferred
to the gas. As discussed later in more detail, ∆Q and ∆W are not total differentials; That means
that Q and W are not state functions.

3.8 Ideal Gas in the Microcanonical Ensemble

Γ =
∫
U<H<U+∆

d3N~qd3N~p (3.137)

= T (3.138)

Here Γ is the number of micro-states in the energy range U < H < U + ∆. So the number N ′
of micro-states with the energy H < U is given by

Σ(U, V,N) =
∫
H<U+∆

d3N~qd3N~p (3.139)

and

Σ′(U) = dΣ
dU

(3.140)

= ω(U) (3.141)

= Γ
∆ (3.142)
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For a mono-atomic ideal gas of N atoms in a volume V the shape of the container is not relevant.
To calculate Σ a (quantum mechanical) correction factor has to be introduced.

Σ = 1
N !h3N

∫
H<U

d~q1 . . . ~dqN ~dp1 . . . d~pN (3.143)

H =
N∑
i=1

[
~p2

1
2m + VWall(~qi)

]
(3.144)

VWall =
{

0 |~qi ∈ V
∞ |~qi 6∈ V

(3.145)

∑
(U) = 1

N !h3

∫
V
d~q1 . . .

∫
V
d~qN

∫∑N

i=1
~p2
i

2m<U
d~p1 . . . d~pN (3.146)

= V N

N !h3N (2m)
3N
2

∫∑3N
i=1 x

2
i<U

dx1 . . . dx3N (3.147)

x1 = pi√
2m

(3.148)

dp1 = (2m)
1
2dx1 (3.149)∑

(U) = V N

N !h3N (2m)
3N
2 ν3N

(
U

1
2
)

(3.150)

(3.151)

Here ν3N is the volume of a 3N -dimensional hypersphere which is νn(R) = cnR
n. The coefficient

cn turns out to be cn = π
n
2

Γ(n2 +1) . With this the volume becomes

νn(R) = π
n
2

Γ
(
n
2 + 1

)Rn (3.152)

Γ(U) = ∆dΣ
dU

(3.153)

=
(
V

(2πmU
h2

) 3
2
)N

1
N !

1
Γ
(

3N
2 + 1

) 3N
2

∆
U

(3.154)

S = kB ln (Γ(U)) (3.155)

= kB

(
N ln

(
V

(2πmU
h2

) 3
2
)
− ln (N !)− ln

(
Γ
(3N

2

))
+ ln

(∆
U

))
(3.156)

For very large systems (N >> 1, V >> 1)N >> ln(N) and the Stirling approximation (ln(N !) =
N ln(N)−N) the expression simplifies a lot.

S = kBN

[
ln
(
V

N

(4πmU
3h2N

) 3
2
)

+ 5
2

]
(3.157)

So the entropy S is extensive, but only because the 1
N ! factor was introduced in the beginning.

With the thermal wavelength λt, introduced earlier and using that
U = 3

2NkBT , it can be written that

S = kBN

(
ln
(
V

N
λ−3
t

)
+ 5

2

)
(3.158)

= −kBN
(

ln
(
N

V
λ3
t

)
− 5

2

)
, (3.159)

which is the same result derived in in the canonical ensemble (see equation (3.120)).
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3.8.1 Heat capacity of a solid

A very simple model for a solid is just a cube lattice with localised atoms that can be modelled
as 3N harmonic oscillators with the same frequency ω. The Hamiltonian H is given by

H =
N∑
i=1

(
~p2
i

2m + 1
2mω

2~q2
i

)
(3.160)

As the particles are distinguishable since they are localised on lattice sites, no 1
N ! is needed.

Σ(U) = 1
h3N

∫
H
d~q1 . . . d~qNd~p1 . . . d~pN (3.161)

= 1
h3N

2
ω

3N ∫
H
dx1 . . . dx6N (3.162)

= 1
h3N

2
ω

3N
ν6N

(
U

1
2
)

(3.163)

U = 3NkBT (3.164)

S = 3NkB
(

ln
( 2πU

3hωN

))
(3.165)

3.9 Grand Canonical Ensemble

For an open system, where particles can exchange with the reservoir, also the particle number
can fluctuate. This is important for example in cells, chemical reactions, and others. Again
considering two coupled systems, and H(p3N , q3N , N) ≈ H(p3N , q3N , N1) + H(p3N , q3N , N2) +
interactions.

N1

V1

N2 = N −N1

V2 = V − V1

Figure 3.2: A small volume V1 in contact with a reservoir of volume V2. The total number of particles stays
constant N = N1 + N2, but the volume V1 can exchange particles with the reservoir; Further
V1 << V2 and N1 << N2. (The stripy pattern represents thermal insulation).

The canonical partition function is

Z(N,V, T ) = 1
h3NN !

N∑
N1=1

N !
N1!N2!

×
∫
d3N1p1d

3N1q1d
3N2p2d

3N2q2e
−βH(p1,q1,N1)−βH(p2,q2,N2) (3.166)

=
N∑

N1=0
ZN1(V1, T )ZN2(V2, T ) (3.167)

Introduce the probability distribution ρ

ρ(p3N1 , q3N2,N1) ≡ ZN2(V2, T )
ZN

e−βH(p3N1 ,q3N1 ,N1)

h3N1N1! (3.168)
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which is normalized

N∑
N1=0

∫
d3N1p1d

3N1q1ρ(p1, q1, N1) = 1. (3.169)

(3.170)

With the free energy F (N,V, T ) = −kBT ln(Zn(V, T )) it can be obtained that

Z(N2, V2, T )
Z(N,V, T ) = e−β(F (N−N1,V−V1,T )−F (N,V,T )) (3.171)

Now N1 << N , which means that system 2 is a particle and volume reservoir. Now F (N −
N1, V − V1, T ) can be expanded around N1 = 0 and V1 = 0.

∂F (N,V, T )
∂V

|N,T = −P (N,V, T ) (3.172)

Here ∂F (N,V,T )
∂N |V,T ≡ µ(N,V, T ) is the chemical potential. Furthermore µ is the free energy

needed to add a particle to the system.

F (N −N1, V − V1, T ) ≈ F (N,V, T )−N1µ+ V1P (3.173)
ZN2(V2, T )
ZN (V, T ) = eβN1µ−βPV1 (3.174)

ρ(p, q,N) = e−β(PV−µN+H(p,q))

N !h3N (3.175)

With this the grand canonical partition function can be written

Zµ(V, T ) ≡
∞∑
N=0

eβNµZN (V, T ) (3.176)

=
∞∑
N=0

eβNµ
∫
d3Nqd3Np

N !h3N e−βH(p3N ,q3N ,N) (3.177)

= eβPV
∞∑
N=0

d3Nqd3Npρ(p, q,N) (3.178)

= eβPV , (3.179)

which is the grand-canonical equation of state.

kBT ln(Zµ(V, T )) = −Ω(µ, V, T ) (3.180)
= PV (3.181)
= P (µ, V, T )V (µ, T ) (3.182)

Here Ω(µ, V, T ) is the grand (canonical) potential.

3.9.1 Properties of Particles in the Grand (Canonical) Ensemble
Mean Number of Particles

From the definition of the grand-canonical partition function it can be seen that

〈N〉 = ∂ lnZµ
β∂µ

. (3.183)
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Next, we calculate the particle number fluctuation 〈N2〉 − 〈N〉2

∂

β∂µ

∂

β∂µ
lnZµ(V, T ) = ∂

β∂µ

∂

β∂µ
ln
( ∞∑
N=0

eβNµZN

)
(3.184)

= ∂

β∂µ

∑
N Ne

βNµZN∑
N e

βNµZN
(3.185)

=
∑
N N

2eβNµZN∑
N e

βNµZN
−
(∑

N Ne
βNµZN∑

N e
βNµZN

)2

(3.186)

= 〈N2〉 − 〈N〉2 (3.187)

= ∂

β∂µ

∂

β∂µ

PV

kBT
(3.188)

= 1
β2

∂2

∂µ2

∣∣∣∣∣
V,T

PV

kBT
(3.189)

= kBTV
∂2P

∂µ2

∣∣∣∣∣
T,V

(3.190)

= kBTV
∂2P (µ, T, V )

∂µ2 (3.191)

∝ N (3.192)

So (as for energy fluctuations in the canonical ensemble) the relative particle number deviations
from the mean number are

√
〈N2〉−〈N〉2
〈N〉 ∝ N−

1
2 . This tends to 0 as N → ∞. This means that

there are no particle fluctuations as N becomes large and thus 〈N〉 = N ′ = N for large systems,
where N ′ denotes the most probable particle number

Conclusions

The important conclusion from this is that the grand canonical ensemble, the canonical ensemble
and the micro canonical ensembles are equivalent. Therefore the grand canonical partition
function Zµ(V, T ) becomes

Zµ(V, T ) =
∞∑
N=0

eβNµZN (V, T ) (3.193)

≈ eβN ′µZN ′(V, T ) (3.194)

Here N ′ is the most probable particle number which is of course equal to the mean. Thus the
logarithm of the partition function becomes

lnZµ(V, T ) = βN ′µ+ lnZN ′ (3.195)
(3.196)

The grand potential results from the free energy via a Legendre transformation Ω = F − µN ,
using that F = −kBT lnZN ′ and Ω = −kBT lnZµ.

• With Ω = −PV it follows F = µN − PV . And from F = U − TS it follows that
U = TS + µN − PV . This is the fundamental equation. All thermodynamic potentials
(U,F,Ω, (G)) can be expresses in a bilinear form as products of extensive(S,N, V ) and
intensive (T, µ, P ) state variables.
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3.9.2 Total Differential of Ω

dF (T, V,N) = µdN − PdV − SdT (3.197)
Ω = F − µN (3.198)
dΩ = dF − d(µN) (3.199)

= µdN − PdV − SdT − µdN −Ndµ (3.200)
= −PdV − SdT −Ndµ (3.201)
= dΩ(µ, T, V ) (3.202)

3.9.3 Gibbs-Duhem Equation
Since Ω = −PV

dΩ = −PdV − V dP (3.203)
= −PdV − SdT −Ndµ (3.204)

it can be concluded that

0 = V dP − SdT −Ndµ. (3.205)

This is the Gibbs-Duheme equation which is the relation between all intensive differentials.

3.9.4 Derivation of ∂2P
∂µ2 |T,V

The free energy is F (N,V, T ) = Nf(N,V, T ). By construction f is intensive, it can only depend
on V

N = v, so F (N,V, T ) = Nf
(
V
N , T

)
= Nf(v, t), where v is the volume per particle. The

chemical potential µ again is defined as

µ = ∂F

∂N

∣∣∣∣
T,V

(3.206)

= ∂

∂N
[Nf(v, T )] (3.207)

= f(v, T )− v∂f(v, T )
∂v

(3.208)

= µ(v, T ) (3.209)

The pressure P is

P = − ∂F

∂V

∣∣∣∣
T,N

(3.210)

= − ∂

∂V
(Nf(v, T )) (3.211)

= − ∂

∂V
f(v, T ) (3.212)

= P (v, T ) (3.213)

From this

P (v, T ) = P (v(µ, T ), T ) (3.214)
=̂P (µ, T ) (3.215)

∂P

∂µ

∣∣∣∣
T

= ∂P

∂v

∣∣∣∣
T

∂v

∂µ

∣∣∣∣
T

(3.216)
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So with 3.209 ∂µ
∂v

∣∣∣
T
can be calculated.

∂µ

∂v

∣∣∣∣
T

= ∂f

∂v

∣∣∣∣
T
− ∂f

∂v

∣∣∣∣
T
− v ∂

2f

∂v2

∣∣∣∣∣
T

(3.217)

= −v2 ∂
2f

∂v2

∣∣∣∣∣
T

(3.218)

∂P

∂v

∣∣∣∣
T

= − ∂2f

∂v2

∣∣∣∣∣
T

(3.219)

and therefore

∂µ

∂v

∣∣∣∣
T

= v
∂P

∂v

∣∣∣∣
T

(3.220)

With all of this 3.216 becomes

∂P

∂µ

∣∣∣∣
T,V

= 1
v

(3.221)

and

∂2P

∂µ2

∣∣∣∣∣
V,T

=
∂ 1
v

∂µ

∣∣∣∣∣
T

(3.222)

= − 1
v2
∂v

∂µ

∣∣∣∣
T

(3.223)

= − 1
v3

∂v

∂P

∣∣∣∣
T

(3.224)

Going back to variables T, V,N and using the isothermal compressibility κT (P, T ) this becomes

∂2P

∂µ2

∣∣∣∣∣
TV

= − N2

V 3
∂V (P, T,N)

∂P

∣∣∣∣∣
T,N

(3.225)

= N2

V 2 κT (P, T ) (3.226)

3.10 Ideal Gas in the Grand Canonical Ensemble
The grand-canonical partition function was defined as

Z(µ, V, T ) =
∞∑
N=0

eβNµZ(N,V, T ) (3.227)

(3.228)

The free energy was derived in section 3.7 as F (N,V, T ) = kBTN ln
(
Nλ3

t
V

)
− kBTN = Nf(v, T )

and the chemical potential is µ = ∂F
∂N = kBT ln

(
Nλ3

t
V

)
. So the partition function becomes

Z =
∞∑
N=0

1
N !

(
V

λ3
t

eβµ
)N

(3.229)

= e
V

λ3
t

eβµ

. (3.230)

45



And the grand potential Ω is

Ω(µ, V, T ) = −kBT ln(Z(µ, V, T )) (3.231)

= −kBT
V

λ3
t

eβµ (3.232)

= −PV. (3.233)

and from that follows

−kBTN = −PV (3.234)
PV = NkBT. (3.235)

The ideal equation of state is equation (3.235).

3.10.1 Chemical Reactions
A bimolecular reaction is an example of a simple chemical reaction. Here two atoms react to
one molecule which can split back into the two atoms again: A + A 
 B. Examples are gases
like hydrogen H +H 
 H2. Here µA and µB are the chemical potentials, V is the volume and
T is the temperature. The partition function is

Z(µA, µB, V, T ) =
∞∑

NA=0

∞∑
NB=0

eβNAµAeβNBµBZA(NA, V, T )ZB(NB, V, T ). (3.236)

Here ZA (and similar for ZB) are ideal gas partition functions,

ZA(NA, V, T ) = 1
NA!

(
V

λ3
tA

)NB
. (3.237)

Z =
∞∑

NA=0

1
NA!

(
eβµA

V

λ3
tA

)NA ∞∑
NB=0

1
NB!

(
eβµB

V

λ3
tB

)NB
(3.238)

Z = exp
[
eβµA

V

λ3
tA

+ eβµB
V

λ3
tB

]
. (3.239)

The expectation values of NA and NB are

〈NA〉 = NA (3.240)

= 1
β

∂ ln(Z)
∂µA

(3.241)

= eβµA
V

λ3
tA

(3.242)

〈NB〉 = NB (3.243)

= eβµB
V

λ3
tB

. (3.244)

The chemical energy of the reaction 2A → B is given by ∆µ = µB − 2µA (one B created, two
A destroyed).

NB = eβ(∆µ+2µA) V

λ3
tB

(3.245)

= eβ∆µ V

λ3
tB

N2
A

λ6
tA

V 6 (3.246)

NB

V

(
V

NA

)2
= CB
C2
A

(3.247)
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Here CA = NA
V and CB = NB

V .

CB
C2
A

= eβ∆µλ
6
tA

λ3
tB

(3.248)

≡ K (3.249)

This is the law of mass action, K is the equilibrium reaction constant. The concentrations
of components in a chemical reaction are related by power laws; The powers are given by the
multiplicity in the reaction. The total or maximal concentration of A is given by CA + 2
CB = CTOT

A (if CB = 0 then CA = CTOT
A and if CA = 0 then CB = CTOT

A /2).

CB
(CTOT

A − 2CB)2 = K (3.250)

CB
K

=
(
CTOT
A

)2
+ 4(CB)2 − 4CBCTOT

A (3.251)

0 = (CB)2 − CB
(
CTOT
A + 1

4K

)
+ (CTOT

A )2

4 (3.252)

CB =
CTOT
A + 1

4K
2 ±

√
(CTOT

A + 1
4K )2

4 −
(
CTOT
A

)2
4 (3.253)

Since CB cannot be larger than CTOT
A
2 the negative root is the correct one.

CB =
CTOT
A + 1

4K
2 −

√
1

64K2 + CTOT
A

8K (3.254)

So this is the concentration of the product.
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4 Thermodynamics

As already mentioned in Chapter ??, Thermodynamics (Thermostatics would be a better name)
describes macroscopical systems with the help of a few phenomenological rules which are called
the laws of thermodynamics. These rules are not mathematically derived, but rather are gener-
alisations or idealisations of experimental results. With these laws a large number of predictions
becomes possible. The advantage of Thermodynamics is the generality of the predictions, the
disadvantage is that material specific properties like the heat capacity of gases are not deducible.

4.1 Axiomatic Thermodynamic
Starting with the fundamental equation

U = TS − PV + µN (4.1)

and taking the differential form

dU = TdS − PdV + µdN (4.2)

T (S, V,N), P (S, V,N) and µ(S, V,N) can be derived, so U(S, V,N) contains the complete infor-
mation and everything can be derived from it. T (S, V,N) does not contain all the informations
since one would need the three functions T (S, V,N), P (S, V,N) and µ(S, V,N) to reconstruct
U(S, V,N) - they are the slopes of the 3-dimensional function U along the 3 directions. Now
one can do the Legendre transform.

F = U − TS (4.3)
dF = dU − TdS − SdT (4.4)

= −SdT − PdV + µdN (4.5)
dF (T, V,N) = −S(T, V,N)dT − P (T, V,N)dV + µ(T, V,N)dN (4.6)

So the above Legendre transform is performed by

• obtaining S(T, V,N) by inversion of T (S, V,N)

• replacing S by S(T, V,N) so that

F (T, V,N) = U(S, V,N)− TS (4.7)
= U(S(T, V,N), V,N)− TS(T, V,N) (4.8)

In fact F (T, V,N) does also contain the complete thermodynamic information, so do the
inversions V (T, F,N), T (F, V,N) and N(F,T,V): For example, from the expression for dF the
expression for dV can be derived:

dV = −S
P
dT − 1

P
dF + µ

P
dN. (4.9)

From this differential the functions S(T,F,N)
P (T,F,N) , P (T, F,N) and µ(T, F,N) can be obtained.

There are many ways of formulating thermodynamics, but here the focus will lie only on the
most important ones.
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4.2 Equation of State and Response Functions
We again consider the differential of F

dF (T, V,N) = −S(T, V,N)dT − P (T, V,N)dV + µ(T, V,N)dN. (4.10)

F (T, V,N) contains the complete information, the functions S(T, V,N), P (T, V,N), µ(T, V,N)
however do not. They contain other useful information though and so they are called equations
of state and they are first derivatives of thermodynamic potentials. The following one is called
the thermal equation of state:

P (T, V,N) = −∂F (T, V,N)
∂V

. (4.11)

The functions P (T, V,N), V (P, T,N), N(P, T, V ) are equivalent; in fact P (T, V,N) = P (T, v),
where v = V

N . The so-called caloric equation of state can be derived from

dU = TdS − PdV + µdN (4.12)

dS = 1
T
dU + P

T
dV − µ

T
dN (4.13)

∂S(U, V,N)
∂U

= 1
T (U, V,N) . (4.14)

(4.15)

T (U, V,N) connects the variables T,U, V and N and is called the caloric equation of state.
Typically one writes U(T, V,N), which is derived by inversion. So in conclusion, first derivatives
of thermodynamic potentials are called equations of state. Now one can also take the second
derivatives. These give the so-called response functions. We again consider the thermal equation
of state

V (P, T,N) = ∂G(P, T,N)
∂P

. (4.16)

Here G = U−TS+PV is the Gibbs free energy. Considering the total differential of V (P, T,N),
we obtain

dV = ∂V

∂P

∣∣∣∣
T,N

dP + ∂V

∂T

∣∣∣∣
P,N

dT + ∂V

∂N

∣∣∣∣
P,T

dN. (4.17)

So the second derivatives of thermodynamic potentials describe how state variables change,
when other state variables are varied. These response functions are extremely important to
characterise systems, so they are very useful in applications and hence they are tabulated in
books. Now with this the isothermal compressibility κT can be written down as

κT (P, T ) = − 1
V

∂V (P, T,N)
∂P

(4.18)

−V κT (P, T ) = ∂V (P, T,N)
∂P

(4.19)

= ∂2G(P, T,N)
∂P 2 . (4.20)

Now the expansion coefficient α is

α(P, T ) = 1
V

∂V (P, T,N)
∂T

. (4.21)

(4.22)
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And the volume per particle is

∂V (N,P, T )
∂N

= ∂Nv(P, T )
∂N

(4.23)

= v(P, T ) (4.24)

With that equation (4.17) can be written as

dV = −V κTdP + V αdT + vdN. (4.25)

Hence differentials of equations of state define response functions.

4.3 Maxwell Relations
Again starting from the fundamental differential form dU = TdS − PdV + µdN :

T = ∂U(S, V,N)
∂S

(4.26)

= T (S, V,N) (4.27)

−P (S, V,N) = ∂U(S, V,N)
∂V

(4.28)

So since
∂

∂V

∣∣∣∣
S,N

∂U

∂S

∣∣∣∣
V,N

= ∂

∂S

∣∣∣∣
V,N

∂U

∂V

∣∣∣∣
S,N

(4.29)

it follows that

∂T (S, V,N)
∂V

= −∂P (S, V,N)
∂S

. (4.30)

This is called a Maxwell relation (not to be confused with Maxwell’s equation from electrody-
namics), which relates derivatives of state variables. This concept is very powerful, but it can
be confusing, because there are many Maxwell relations. Just from U(S, V,N) many pairs can
be formed and there are many more:

F (T, V,N), G(T, P,N), H(S, P,N),Ω(T, V,N) . . . (4.31)

4.4 Adiabatic Processes and the Application of Thermodynamic
Calculus

The differential form of the first law of thermodynamics is (again)

TdS = dU + PdV − µdN (4.32)
= ∆Q (4.33)
6= dQ. (4.34)

The last equation stresses that heat is not a potential! Adiabatic processes are processes where
no heat is exchanged with the environment, for example by doing the process as quickly as
possible, so nearly no heat can be conducted away from the system. To describe typical adiabatic
processes, such as compression of a gas, it is useful to switch the independent variables of S
from (U, V,N), to for example (V, P,N) or (V, T,N). To make calculations easier, the µN in
equation (4.32) is dropped, as N is constant most of the time anyway.
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4.4.1 From S(U, V ) to S(P, T ) and S(V, T )

From the caloric equation of state U(P, T ), dU is written as

dU = ∂U

∂P
|TdP + ∂U

∂T
|PdT. (4.35)

From the thermal equation of State V (P, T ), dV becomes

dV = ∂V

∂P

∣∣∣∣
T
dP + ∂V

∂T

∣∣∣∣
P
dT. (4.36)

With this equation (4.32) becomes

TdS =
[
∂U

∂P

∣∣∣∣
T

+ P
∂V

∂P

∣∣∣∣
T

]
dP +

[
∂U

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

]
dT (4.37)

Alternatively, TdS can be written in terms of dT and dV .

TdS = ∂U

∂T

∣∣∣∣
V
dT +

[
P + ∂U

∂V

∣∣∣∣
T

]
dV (4.38)

The expansions (equations 4.37 and 4.38) are the total differential of dS in terms of the non-
canonical variables P, V and V, T . In contrast to dS in terms of U and V they do not contain
the complete thermodynamical information.

Obtaining the Heat Capacity

The heat capacity at constant volume is defined as

CV = ∆Q
∆T

∣∣∣∣
V
. (4.39)

Using equation (4.38) and that ∆Q = TdS, we find

CV = ∂U

∂T

∣∣∣∣
V
. (4.40)

The heat capacity at constant pressure is

CP = ∆Q
∆T

∣∣∣∣
P
. (4.41)

Using equation (4.37) and again that ∆Q = TdS we thus obtain

CP = ∂U

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

(4.42)

= ∂(U + PV )
∂T

∣∣∣∣
P

(4.43)

= ∂H

∂T

∣∣∣∣
P
. (4.44)
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Here H = U + PV is the enthalpy. For an ideal gas U = 3
2kBTN and hence

cV = ∂U

∂T

∣∣∣∣
V

(4.45)

= 3
2kBN (4.46)

cP = ∂U

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

(4.47)

= 3
2kBN +NkB (4.48)

= 5
2NkB > cV . (4.49)

(4.50)

In deriving equation (4.48) the equation of state

PV = NkBT (4.51)

⇒ ∂V

∂T

∣∣∣∣
P

= NkB
P

(4.52)

has been used. So in general cP ≥ cV , because part of the absorbed heat is converted to
mechanical work.

TdS equations

Now the task is to relate the prefactors in equations (4.38) and (4.37) to response functions.

dS = 1
T

∂U

∂T

∣∣∣∣
V
dT +

(
P

T
+ 1
T

∂U

∂V

∣∣∣∣
T

)
dV (4.53)

Using

∂2S

∂T∂V
= ∂2S

∂V ∂T
(4.54)

this yields

∂

∂V

∣∣∣∣
T

1
T

∂U

∂T

∣∣∣∣
V

= ∂

∂T

∣∣∣∣
V

(
P

T
+ 1
T

∂U

∂V

∣∣∣∣
T

)
(4.55)

1
T

∂2U

∂V ∂T
= − 1

T 2

(
P + ∂U

∂V

∣∣∣∣
T

)
+ 1
T

∂P

∂T

∣∣∣∣
V

+ 1
T

∂2U

∂T∂V
(4.56)

P + ∂U

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V
. (4.57)

The second step now is to relate ∂P
∂T

∣∣∣
V

to something already known.

dV = ∂V

∂T

∣∣∣∣
P
dT + ∂V

∂P

∣∣∣∣
T
dP (4.58)

dP = dV
∂V
∂P |T

−
∂V
∂T |P
∂V
∂P |T

dT (4.59)

With that the derivative of P with respect to T can be rewritten as

∂P

∂T
|V = −

∂V
∂T |P
∂V
∂P |T

(4.60)

= α

kT
(4.61)
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With all of this

P + ∂U

∂V
|T = T

∂P

∂T
|V (4.62)

= Tα

kT
(4.63)

Therefore

TdS = cV dT + Tα

κT
dV (4.64)

TdS = cPdT − αTV dP. (4.65)

Where the first one was derived above and the second one is left as an exercise. These so-called
TdS equations are important since for adiabatic processes TdS = 0.

4.5 Different Ways of Expanding a Gas

There are many different paths of expanding a gas from an initial Volume Vi to a final volume
Vf > Vi. The mechanical work W performed by the gas is

W =
∫ Vf

Vi

P (V )dV. (4.66)

Vi Vf
V

Pi

Pf

P

Figure 4.1: P − V diagram of an expanding gas from initial volume Vi to final volume Vf . Green lines are
isotherms and blue lines are isochors (vertical) and isobars (horizontal).

Here it can be assumed that the state changes are slow, so that the equilibrium holds and
T (P, V ) is given by the equation of state. So the path 1 can be assumed to be an isothermal
expansion (P = NkBT

V ). The work W 1 along this path is

W 1 = NkBT

∫ Vf

Vi

dV

V
(4.67)

= NkBT ln
(
VF
Vi

)
(4.68)
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Obviously path 2 and 3 are not isothermal

W 2 = Pi(Vf − Vi) = NkBT

Vi
= NkBT

(
Vf
Vi
− 1

)
(4.69)

W 3 = Pf (Vf − Vi) = NkBT

Vf
= NkBT

(
1− Vi

Vf

)
(4.70)

Clearly W 2 > W 1 > W 3, since Vf
Vi
− 1 > ln

(
Vf
Vi

)
> 1 − Vi

Vf
or x − 1 > ln(x) > 1 − 1

x for x > 1.
It can be clearly seen that the work is not an exact differential, since Wi→f is path dependent.
So the total work Wtot done in a cyclic process is

Wtot =
∮

∆W (4.71)

=
∮
PdV (4.72)

6= 0. (4.73)

This is the area of a cyclic process in the PV diagram, so the work done is not a state function.
Because of that a work function W (P, V ) has no meaning.

4.5.1 Conclusions
• For a closed contour integral over the first law of thermodynamics

dU = ∆Q−∆W (4.74)

we have ∮
dU = 0. (4.75)

Thus, it becomes clear that heat is also not a state function, since in general∮
∆Q =

∮
∆W (4.76)

6= 0. (4.77)

• In this example, it also becomes clear that Uf −Ui = 0 and with that the absorbed heat Q
is equal to the work W performed along the isotherm for an ideal gas, since U = 3

2NkBT
(for an ideal mono-atomic gas).

• For a thermally insulated system, so that ∆Q != 0, it can be seen that

dU = −∆W (4.78)
= −dW (4.79)

and the differential work becomes an exact differential.

4.5.2 Adiabatic Expansion of an Ideal Gas
Now a third TdS equation can be derived. Inserting

dT = 1
αV

dV + κT
α
dP (4.80)
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into the first (equation (4.65)) and second (equation (4.65)) TdS equation yields

TdS = cV κT
α

dP +
(
cV
αV

+ Tα

κT

)
dV (4.81)

and

TdS = cP
αV

dV +
(
cPκT
α
− αTV

)
dP. (4.82)

Comparing the coefficients of dP yields
cV κT
α

= cPκT
α
− αTV (4.83)

cP − cV = α2TV

κT
. (4.84)

Comparing the coefficients of dV also yields
cV
αV

+ Tα

κT
= cP
αV

(4.85)

cP − cV = α2TV

κT
. (4.86)

Inserting either of equations (4.84) or (4.86) into either of the modified TdS equations (4.82) or
(4.82) yields

TdS = cV κT
α

dP + cP
αV

dV. (4.87)

This now is the third TdS equation. It can be used to describe an adiabatic process (TdS = 0).

TdS = cV κT
α

dP + cP
αV

dV (4.88)

= 0 (4.89)

For the ideal gas we have

κT = − 1
V

∂V

∂P

∣∣∣∣
T

(4.90)

= − 1
V

∂NkBT

∂P

∣∣∣∣
T

(4.91)

= +NkBT

V P 2 (4.92)

= 1
P
. (4.93)

For a monoatomic, ideal gas

cV = 3
2NkB (4.94)

cP = 5
2NkB (4.95)

which are independent of V and P . Inserting these expressions into equation (4.89) this yields
dP

P
= −γ dV

V
(4.96)

ln(P )|fi = −γ ln(V )|fi (4.97)

ln
(
Pf
Pi

)
= −γ ln

(
Vi
Vf

)
(4.98)

Pf
Pi

=
(
Vi
Vf

)γ
. (4.99)
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This is the adiabatic equation and γ = cP
cV
≥ 1 is the adiabatic exponent. Since γ ≥ 1 the

adiabatic P (V ) curves fall off faster than the isotherms. The temperature decreases during this
adiabatic transformation. So for the ideal gas we find

γ = cP
cV

(4.100)

= 5
3 , (4.101)

which can be used to describe the Carnot process.
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4.6 Carnot Process
The Carnot process is the idealisation of real heat engines which convert heat into work. The
P − V -diagram can be seen in figure 4.2.

V

P
a

b

cd

T2 =  const.
T1 =  const.

Q = 0
Q = 0

Figure 4.2: P -V -diagram of a typical heat engine / Carnot cycle

The cycle consist of four steps (colours refer to figure 4.2).

• a→ b: isothermal expansion at T1 (green)

• b→ c: adiabatic expansion (light blue)

• c→ d: isothermal compression at T2 < T1 (blue)

• d→ a: adiabatic compression (red)

Figures 4.3 and 4.4 show these four steps again in a semi-realistic realisation with a cylinder
that is periodically connected to two different heat reservoirs. As a result heat is transferred
from the hot reservoir (T1) to the cold reservoir (T2).

STEP 1 (a→ b)

V, PT1 T2

STEP 2 (b→ c)

V
T1 T2

Figure 4.3: Carnot process steps 1 and 2: isothermal and adiabatic expansion. (In step 2 the cylinder is
thermally insulated - shown with the cross-hatching pattern).
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STEP 3 (c→ d)

P
T1 T2

STEP 4 (d→ a)

V, PT1 T2

Figure 4.4: Carnot process steps 3 and 4: isothermal and adiabatic compression. (In step 4 the cylinder is
thermally insulated - shown with the cross-hatching pattern)

As in every cycle the integral over U is zero∮
dU = 0, (4.102)

it follows that ∮
∆W ≡Wtot (4.103)

= Q1 +Q2. (4.104)

In the adiabatic processes no heat is absorbed.
HereWtot is the total work done by the system. This is equivalent to the area within one cycle

in the P − V diagram. Q1 is the heat absorbed from reservoir 1 (which has the temperature
T1). Q2 is the heat absorbed from reservoir 2 (which has the temperature T2). Further

∮
dS = 0 (4.105)

= Q1/T1 + Q2/T2 (4.106)

and thus

Q2 = −T2
T1
Q1 (4.107)

So heat is injected into the reservoir 2 and the total work Wtot is

Wtot = Q1 −
T2
T1
Q1 (4.108)

= Q1

(
1− T2

T1

)
(4.109)

= Q1η. (4.110)

Here η = Wtot
Q1

= 1 − T2
T1

is defined as the efficiency of the heat engine; it is the net work done
per absorbed heat from the hotter reservoir. Since 0 < T2

T1
< 1, it can be seen that 0 < η < 1.

Wtot is larger, the smaller T2 is. For T2 = T1 the work and the efficiency are zero.
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4.6.1 Principle of Cogeneration (of Heat and Electricity)
The idea is to heat a house as efficiently as possible. In the house is a tank with natural gas to
burn and below the house ground water can be found. By just burning the gas per one Joule
of burned gas the house is fed with (obviously) one Joule of heat. By using a Carnot engine
this can be done much better: The first idea would be to just burn gas in a heat engine and
use the electricity to power other appliances. The room is at T1 = 313K and the gas burns at
T2 = 873K. The efficiency of the heat engine is

η = 1− 313
873 (4.111)

= 0.64 (4.112)

So for every Joule of chemical energy 0.64J go into mechanical (quasi electrical) work and 0.36J
go into the house. But this can be improved further: The 0.64J can be fed into the heat pump to
transfer heat from the ground water at 283K to the house as well. The coefficient of performance
can be calculated via

1
η

= T1
T1 − T2

(4.113)

= 313
313− 283 (4.114)

= 10.4. (4.115)

This means that for every one Joule of electric power 10.4 Joule of heat can be transferred.
Using the 0.64J of electricity from above to power this ground-water-based heat engine

E = 0.36J + 10.4 · 0.64J (4.116)
≈ 6.7J (4.117)

of heat can be transferred to the house per one Joule of burned gas. This seems like a violation
of energy conservation, but it is not to forget that the groundwater actually became a lot colder
by doing this. This is where the energy comes from. There is just a huge amount of ground
water, so the effect is not really noticeable. These systems are used in many private and public
buildings. The process is called co-generation (of heat and electricity)

4.7 Transfer and Creation of Entropy
Now we discuss why real engines are less efficient than the idealised Carnot process. ∆Q is the
heat transfer from reservoir 1 at T1 to reservoir 2 at T2. The two reservoirs are connected via a
wire that conducts heat (see Fig. 4.5).

T1 T2

⇒ ∆Q⇒

⇒ ∆S ⇒

Figure 4.5: Two reservoirs with temperatures T1 and T2 can exchange heat and entropy via wires. (The stripy
pattern represents thermal insulation).
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4.7.1 Reversible Case

The entropy changes in the reservoirs are ∆S1 = −∆Q
T1

< 0 and ∆S2 = −∆Q
T2

> 0. For T1 = T2
the total entropy change ∆Stot = ∆S1 + ∆S2 = 0 is zero. This is an example of a reversible
heat transfer. Heat is transferred, but the total entropy stays constant. The second law of
thermodynamics allows these kinds of reversible processes to happen.

4.7.2 Irreversible Case

Opposite to the reversible case, here the assumption is that T1 > T2. The heat will flow from
the hot to the cold reservoir. ∆Q is so small that T1 and T2 stay quasi constant. The entropy
however increases:

∆Stot = ∆S1 + ∆S2 (4.118)

= ∆Q
( 1
T2
− 1
T1

)
(4.119)

= ∆QT1 − T2
T1T2

(4.120)

> 0, (4.121)

and thus this process is irreversible. Note that the opposite process, i.e. heat flowing from the
cold to the hot reservoir, would increase the entropy and is not allowed.

4.7.3 Comments

• The Carnot process is reversible if no heat leaks from the hot to the cold reservoir.

• The heat flow from the hot to the cold reservoir without the conversion to mechanical
work is the main reason for the low efficiency of real heat engines.

• There is no heat engine with a higher efficiency than the Carnot engine.

4.8 Extremal Properties of Thermodynamic Potentials

• In an insulated system the entropy S(U, V,N) is maximised, as shown in section ??.

• If energy transfer is allowed between a small system and a reservoir (see Fig. 4.6),

dU = TdS − PdV + µdN (4.122)

dS = 1
T
dU + P

T
dV − µ

T
dN (4.123)

Stot = S(U1, V1, N1) + S(U − U1, V − V1, N −N1) (4.124)

= S(U1, V1, N1) + S(U, V,N)− U1
T

(4.125)

= S(U1, V1, N1)− U1
T
. (4.126)

= − 1
T

(U1 − S1T ) (4.127)
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U1 U − U1

Figure 4.6: A small reservoir in heat contact with a reservoir (The stripy pattern represents thermal insulation).

So from the second law of thermodynamics follows that S1 − U1
T is maximised. And thus

U1− TS1 is minimised. The free energy F = U − TS is minimised when T, V,N are fixed.

• Now entropy transfer and volume transfer are allowed: V1 and U1 can change (see Fig. 4.6):

Stot = S(U1, V1, N1) + S(U − U1, V − V1, N −N1) (4.128)

= S1 + S(U, V,N)− U1
T
− V1P

T
(4.129)

The total entropy Stot is maximised, and thus TS1 − U1 − V1P is maximised. With that
the Gibbs free energy (free enthalpy) G(T, P,N) = U−TS+PV is minimised for a system
at fixed T, P,N .

V1

U1

V − V1

U − U1

Figure 4.7: A small reservoir in contact with a reservoir, but now V1 and U1 can change (The stripy pattern
represents thermal insulation).

4.9 Thermodynamic Description of Phase Transitions
Simple substances can exist in one of three phases, solid, liquid, vapour (gas).

triple point gaseous

liquid

solid

TTc

P

Pc

Figure 4.8: Example of a phase diagram.

Along the lines in the diagram, two phases coexist, here are two solutions to the equation of
state with different volumes v = V

N per particle. On the two-phase coexistence lines, the system
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splits into two coexisting phases (phase separation / phase equilibrium). At the triple point all
three phases coexist. At the critical point the difference between two phases (liquid/vapour)
vanishes.

4.9.1 Thermodynamic Stability at the Phase Transitions
Consider a two phase system like liquid-vapour at constant T and P . As shown in section 4.8, at
constant T ,P , equilibrium is characterised by a minimum of the Gibbs free energy (free enthalpy)

G = U − TS + PV (4.130)
=
∑
i

µiNi. (4.131)

Now let N = N1 + N2, where N1 is the number of particles in phase 1 and N2 the number of
particles in phase 2.

G = N1µ1 +N2µ2 (4.132)
= N1µ1 + (N −N1)µ2 (4.133)

This can be minimised with respect to N1

∂G

∂N1
= ∂

∂N1
(N1µ1 + (N −N1)µ2) (4.134)

= µ1 − µ2 (4.135)
!= 0. (4.136)

We see that in equilibrium the chemical potential has to be equal for the two phases.

4.9.2 Clausius-Clapeyron Equation
Consider two coexisting phases i = 1, 2. For each phase we can write

dGi = −SidT + VidP + µidNi (4.137)
= d(µiNi) (4.138)
= µidNi +Nidµi (4.139)

dµi = − Si
Ni
dT + Vi

Ni
dP. (4.140)

With the definition of the total differential this yields

∂µi
∂T

∣∣∣∣
P

= − Si
Ni

(4.141)

∂µi
∂P

∣∣∣∣
T

= Vi
Ni

(4.142)

∂(µ2 − µ1)
∂T

∣∣∣∣
P

= −
(
S2
N2
− S1
N1

)
(4.143)

= −∆s. (4.144)

Here s = S
N is the entropy per particle.

∂(µ2 − µ1)
∂P

∣∣∣∣
T

= V2
N2
− V1
N1

(4.145)

= ∆v (4.146)
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Here v = V
N is the volume per particle. With ∆µ = µ2−µ1 and using the differential chain rule

this becomes

∂∆µ
∂T

∣∣∣
P

∂∆µ
P

∣∣∣
T

= −∆s
∆v (4.147)

dPco(T )
dT

= ∂P

∂T

∣∣∣∣
∆µ=0

(4.148)

= ∆s
∆v . (4.149)

With ∆qi = T∆s, which is the latent heat required for the phase change, this becomes

dPco
dT

(T ) = ∆qi
T∆v (4.150)

This is the Clausius-Clapeyron equation.
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5 Statistical Mechanics of Real Systems

5.1 Virial Theorem
Now considering a real gas of interacting atoms, again N denotes the number of gas particles.
The Hamiltonian is

H = Hkin + Hpot (5.1)

Hkin =
N∑
j=1

p2
j

2mj
(5.2)

Hpot =
N∑
j=1

N∑
k=j+1

[
(~qj − ~qk)2

]n
2 ajk (5.3)

Here the parameters ajk give the strength of the potential and n denotes the exponent of the
power law interaction. With this, different scenarios can be considered.

• Gravitation, where n = −1 and ajk ∝ −mjmk

• One-component plasma, where n = −1 and ajk ∝ q2; q is the particle charge.

• Two-component plasma, where n = −1 and ajk ∝ qjqk; qj is the charge of particle j.

This model is very general, as this is a power law interaction model and n can be any arbitrary
number. The partition function Z is given by

Z = 1
N !

N∏
j=1

[∫
V
d3qj

∫
d3pj
h3

]
e−β(Hkin+Hpot). (5.4)

An important note is that Z cannot be calculated explicitly. However some interaction infor-
mation can be obtained analytically. For this it is useful to rescale T ,p and q, using a rescaling
factor of λ, according to

T = λnT̃ (5.5)
q = λq̃ (5.6)
p = λ

n
2 .p̃ (5.7)

This rescaling is constructed so that the Hamiltonian stays invariant under this rescaling.
p2
j

2mj + (qj − qk)najk
kBT

=
p̃2
j

2mj + (q̃j − q̃k)najk
kBT̃

(5.8)

The integration boundaries however do change as∫ L

0
dq =

∫ L
λ

0
λdq̃ (5.9)

=
∫ L̃

0
λdq̃ (5.10)

L = λL̃ (5.11)
V = λ3Ṽ . (5.12)
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Here L is the length of a cube with volume V . Now the partition function in rescaled coordinates
becomes

Z(V, T,N) = 1
N !

N∏
j=1

[∫
Ṽ
d3q̃jλ

3
∫
d3p̃j
h3 λ

3n
2

]
e
−Hkin(p̃)+Hpot(q̃)

kBT̃ (5.13)

= λ3N(1+n
2 )Z(Ṽ , T̃ , N) (5.14)

This λ factor has no physical meaning, it is just a scaling factor. Now from the three variables
V, T,N three new variables V T− 3

n , T and N are defined; with those the partition function can
be written as

Z(V, T,N) ≡ (V T−
3
n , T,N) (5.15)

= (λ3Ṽ T̃−
3
nλ−3, λnT̃ , N) (5.16)

= h(Ṽ T̃−
3
nλnT̃ , N). (5.17)

Here h is an unknown function and it can be seen that λ only appears as a pre-factor to T̃ .
Since Z is proportional to λ3N(1+n

2 ), the partition function must have the functional form

Z(N,V, T ) = (λnT̃ )
3N(1+n

2 )
n φ(Ṽ T̃−

3
n , N), (5.18)

where φ is another unknown function. This formula for Z is exact, as no approximation were
made. The scaling factor λ was used to reveal certain symmetry relations but can well be set
to λ = 1 now. With that Z becomes

Z(N,V, T ) = T
3N(1+n

2 )
n φ(V T−

3
n , N) (5.19)

And from that it can be concluded that the free energy reads

F = −kBT
[3N
n

(
1 + n

2

)
ln(T ) + ln

(
φ(V T−

3
N )
)]

(5.20)

P = − ∂F

∂V

∣∣∣∣
T

(5.21)

= kBTT
− 3
n

φ′
(
V T−

3
n

)
φ
(
V T−

3
n

) (5.22)

S = − ∂F

∂T

∣∣∣∣
V

(5.23)

= −F
T

+ kBT
3N
n

(1 + n

2 ) 1
T
− kBT

3
n
T−

3
n
−1V

φ′
(
V T−

3
n

)
φ
(
V T−

3
n

) (5.24)

by comparison with equation (5.22) this yields

= −F
T

+ kB
3N
n

(
1 + n

2

)
− 3
n

V

T
P (5.25)

and with

F = U − TS (5.26)
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this becomes

U = kBT

[
3N
n

(
1 + n

2

)
− 3
n
V T−

3
n
φ′(V T− 3

n )
φ(V T− 3

n
)

]
(5.27)

= kBT
3N
n

(
1 + n

2

)
− 3
n
V P (5.28)

This is an exact relation between U, T,N, V and P for an interacting system. It is not an
equation of state, as it depends on 5, state variables. This is called the virial theorem. For
n = −1 (gravitational or Coulombic systems this becomes)

U = −3kBTN
2 + 3V P (5.29)

(5.30)

For a vanishing interaction n = 0 it becomes

U = 3
n

[kBTN ] + 3N
2 kBTN (5.31)

= 3N
2 kBTN (5.32)

kBTN = V P, (5.33)

which is the equation for the ideal gas, which is what was expected.

5.2 Virial Expansion

This virial expansion is a perturbative analysis of a real gas. This chapter is also about pertur-
bation theory. The partition function for an interacting gas is

Z (N,T, V ) = 1
N !

N∏
j=1

[∫
d3pjd

3qj
h3

]
e−β(Hkin+Hpot) (5.34)

Hkin =
N∑
l=1

~p2
l

2m (5.35)

Hpot =
N∑
l=1

N∑
k=l+1

w (ql − qk) (5.36)

Here w(q) is an arbitrary pair potential. The momenta can be integrated out exactly.

Z (N,T, V ) = 1
N !

∏
j

∫
d3qj
λ3
t

e−β
∑N

k>l
w(ql−qk) (5.37)

Here λt is again the thermal wavelength. Now switch to the grand-canonical ensemble.

Z (µ, V, T ) =
∞∑
N=0

eβNµZN (V, T ) (5.38)

The grand canonical equation of state was previously derived as

PV = kBT ln (Z (µ, V, T )) (5.39)
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and also

N = 1
β

∂ ln (Z (µ, V, T ))
∂µ

. (5.40)

Z = eβµ is called the fugacity and with this the grand-canonical partition function from equation
(5.38) can be written as a power series in z.

Z (µ, V, T ) =
∞∑
N=0

zNZN (V, T ) (5.41)

With that the equation of state can also be written as a power series.

PV

kBT
= ln (Z) (5.42)

≡ V
∞∑
l=1

(
z

λ3
t

)l
bl (5.43)

= ln
[ ∞∑
N=0

zNZN

]
(5.44)

With Z0 ≡ 1 the first few terms can be written as

= ln[1 + zZ1 + z2Z2 + z3Z3 + . . .] (5.45)

using the Taylor expansion for ln (1 + ε) this yields

= zZ1 + z2
(
Z2 −

1
2Z

2
1

)
+ z3

(
Z3 − Z1Z2 + 1

3Z
3
1

)
+O

(
z4
)

(5.46)

By comparison with the definition from equation(5.43) the coefficients of bl can be read of as

b1 = λ3
t

V
Z1 (5.47)

b2 = λ6
t

V

(
Z2 −

1
2Z

2
1

)
(5.48)

b3 = λ9
t

V

(
Z3 − Z1Z2 + 1

3Z
3
1

)
(5.49)

b4 = . . . . (5.50)

Using the Mayer function f12 = e−βw(q1−q2) − 1 the Zn become

Z1 =
∫
d3q

λ3
t

e0 (5.51)

= V

λ3
t

(5.52)

Z2 = 1
2!λ6

t

∫
d3q1d

3q2e
−βw(q1−q2) (5.53)

= 1
2!λ6

t

∫
d3q1d

3q2(1 + f12) (5.54)

Z3 = 1
3!λ6

t

∫
d3q1d

3q2d
3q3 (1 + f12) (1 + f23) (1 + f13) (5.55)
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and finally the coefficients bl follows as

b1 = 1 (5.56)

b2 = 1
2

∫
d3q1d

3q2
V

f12 (5.57)

b3 = 1
6

∫
d3q1d

3q2d
3q3

V
[(1 + f12) (1 + f23) (1 + f13)− 3 (1 + f12) + 2] (5.58)

= 1
6

∫
d3q1d

3q2d
3q3

V
[f12f23f13 + f12f23 + f12f13 + f23f13] (5.59)

= 1
6

∫
d3q1d

3q2d
3q3

V
[f12f23f13 + 3f12f23]. (5.60)

With this N becomes

N = 1
β

∂ ln (Z (µ))
∂µ

(5.61)

= 1
β

∂z

∂µ

∂ ln (Z (µ))
∂z

(5.62)

= z
∂ ln (Z (z))

∂z
(5.63)

With the concentration being defined as

c = N

V
(5.64)

this becomes

=
∞∑
l=1

l

(
z

λ3
t

)l
bl (5.65)

c ≈ b1
z

λ3
t

+ b22
(
z

λ3
t

)2
+ . . . (5.66)

z

λ3
t

≈ c− 2b2c2 +O
(
c3
)

(5.67)

P

kBT
= z

λ3
t

+
(
z

λ3
t

)2
b2 +O

((
z

λ3
t

)3
)

(5.68)

= c− b2c2 +O
(
c3
)
. (5.69)

The leading term is the ideal gas law and the correction term is proportional to −b2c2. With
the model of hard spheres with diameter d this becomes

b1 = 1 (5.70)

b2 = 1
2

∫
d3q1d

3q2
v

(
e−βw(q1−q2) − 1

)
(5.71)

= −1
2

4π
3 d3 (5.72)

= −1
2vex (5.73)

Here vex = 4π
3 d

3 is the excluded volume. And with all of that P
kBT

becomes

P

kBT
= c+ 1

2vexc
2 +O

(
c3
)

(5.74)

So the first correction to the ideal gas law is proportional to the excluded volume of the hard-
sphered particles.
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5.2.1 Side Note on the Inversion of Power Series

c =
∞∑
l=1

dlz
l (5.75)

Starting from the Ansatz

z =
∞∑
l=1

nlc
l (5.76)

and inserting it c becomes

c = d1z + d2z
2 + d3z

3 (5.77)

= d1
(
n1c+ n2c

2 + . . .
)

+ d2
(
n1c+ n2c

2 + . . .
)2

+ . . . (5.78)

= d1n1c+
(
d1n2 + d2n

2
1

)
c2 + . . . (5.79)

(5.80)

By equating the coefficients this yields

d1n1
!= 1 (5.81)

n1 = 1/d1 (5.82)

d1n2 + d2n
2
1

!= 0 (5.83)

n2 = −d2n
2
1

d1
(5.84)

= −d2
d3

1
(5.85)

5.3 Van-der-Waals Equation of State.

The typical pair potential w(r) (figure 5.1) of a real gas is

w (r) =

∞ |r < D

−w0
(
D
r

)s
|r > D

(5.86)
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Figure 5.1: Typical pair potential (Here for example: D = 2, s = 2)

The first non-trivial virial coefficient is the second one, which becomes

a2 = 1
2

∫ ∞
0

dr4πr2
(
1− e−βw(r)

)
(5.87)

= 2π
∫ D

0
drr2 + 2π

∫ ∞
D

drr2
(

1− e
w0
kBT

(Dr )S
)

(5.88)

The second integral can not be solved in closed form as it will result in a gamma function. So
rather weak attraction can be assumed and

w0
kBT

< 1 (5.89)

a2 = 2π
3 D3 − 2πDS w0

kBT

∫ ∞
D

drr2−s. (5.90)

For s > 3 the integral converges and it can be written as

a2 = 2π
3 D3 − 2π

s− 3D
3 w0
kBT

(5.91)

with

a ≡ 2π
s− 3D

3w0 (5.92)

b ≡ 2π
3 D3 (5.93)

this becomes

a2 ≡ b′ −
a′

kBT
(5.94)

(5.95)
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Which is now the second virial coefficient. It can be plugged into the virial expansion.
P

kBT
= c+ a2c

2 (5.96)

= c+
(
b− a

kBT

)
c2 (5.97)

P = ckBT + (bkBT − a) c2 (5.98)
P + a′c2 = ckBT (1 + bc) (5.99)

with the expansion for 1
1−ε ≈ 1 + ε+O

(
ε2
)
this becomes

≈ ckBT

1− bc (5.100)

P + a′c2 = ckBT

1− bc (5.101)(
P + ac2

)
(1− bc) = ckBT (5.102)

(5.103)

With c = N
V this becomes the Van-der-Waals equation of state.(

P + aN2

V 2

)(
V − b′N

)
= NKBT (5.104)

5.3.1 Conclusions
• In the ideal limit (w0 → 0 and V → 0 and from that results that a = b = 0 and the

Van-der-Waals equation of state becomes the ideal equation of state.

• The real volume Vreal = V − bN is reduced by the volume of particles.

• The real pressure Preal = P + aN2

V 2 is increased by the attraction between the particles, as
a2 ∝ w0D

3.

Equation (5.104) can be rewritten as

P = NkBT

−bN
− qN2

V 2 (5.105)

which is plotted in figure 5.2.

P

PC

VC V

T > TC

T = TC
T < TC

Figure 5.2: P-V diagram of the Van-der-Waals equation
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So there is a finite range of volume for T < Tc within which the volume goes up when the
pressure increases. As a negative compressibility is unphysical, the Maxwell construction is used.

dF = −SdT − PdV (5.106)

With a constant T this becomes

= −PdV. (5.107)

Hence the free energy difference between two volumes V1 and V2 along an isotherm is

∆F = −
∫ V2

V1
P (V ) dV (5.108)

The ∆G for two system parts with the same P0 is

∆G = ∆F + P0∆V (5.109)

=
∫ V2

V1
(P0 − P (V )) dV (5.110)

= 0 (5.111)

This is the equilibrium condition at phase coexistence.

P

V

A1

A2

Figure 5.3: V-P-diagram. The two areas A1 and A2 must be equal: only then the integral becomes zero.

The region with dP
dV > 0 is never observed, because the system splits into two volumes V1

and V2 at pressure P0. These so called binodals limit the two-plane coexistence region. Below
the critical temperature T < Tc there are two planes and there are volumes, where the slope
is zero, there is a volume where the curvature is zero. At the critical point the slope and the
curvature are zero. This is how the critical point can be found. So from equation (5.105) the
volume, temperature (up to a factor of kB) and the pressure at the critical (c) point Qc are
Vcritical = 3b′N , kBTc = 8

27
a′

b′ and Pcritical = a′

27b′2 .

72



73

6 Quantum Statistics

6.1 Quantum Theory
There are a number of experimental discoveries that led to the development of quantum theory.
One of them is the photo electric effect, where an electron is emitted from a metal surface when
hit by radiation, which suggested that the energy is quantised by h with E = hν. The second
one was the electron diffraction experiment which resulted in λ = h

p . In classical mechanics
Newtons equation of motion describes the energy E of a system E = p2

2m . This can also be
applied to waves. The simplest possible wave is a planar wave

Ψ(x, t) ∝ ei(kx−ωt) (6.1)

with the momentum

p = h

λ
= ~k. (6.2)

(6.3)

Here k = 2π
λ and ~ = h

2π . With ω = 2πν the energy can be written as

E = hν = ~ω. (6.4)

And thus the Schrödinger equation emerges:

i~
∂Ψ
∂t

= − ~2

2m
∂2Ψ
∂x2 . (6.5)

With an external potential V the energy becomes

E = p2

2m + V (x). (6.6)

And the stationary Schrödiger equation is

EnΨn(x) = ĤΨn(x), (6.7)

with the Hamiltonian

Ĥ = − h2

2m
∂2

∂x2 + V (x). (6.8)

6.1.1 N-Particle Wave Function
The N -particle Hamiltonian reads

Ĥ = ~2

2m

N∑
i=1

~∇2
i +

N∑
i=1

u(~ri)︸ ︷︷ ︸
external potential

+
N∑
i=1

v(~ri − ~rj)︸ ︷︷ ︸
interaction potential

. (6.9)
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The Schrödinger equation becomes

ĤΨn(~r1, . . . , ~rN ) = EnΨn(~r1, . . . , ~rN ) (6.10)

Pauli 1940 in his famous paper (Physical Reviews 58, 716) introduced a permutation operator
Pij , exchanging the ith and the jth particle.

P̂ijΨn(~r1, ~ri, . . . , ~rj , . . . , ~rN ) = Ψn(~r1, ~rj , . . . , ~ri, . . . , ~rN ) (6.11)

Clearly double application of P results in the original order.

P̂ 2
ijΨn(~r1, ~ri, . . . , ~rj , . . . , ~rN ) = Ψn(~r1, ~ri, . . . , ~rj , . . . , ~rN ) (6.12)

But how is this interesting? Assuming that Ψn is an eigenfunction of P̂ , with the eigenvalue of
P 2 being 1, in principle the sign in front of Ψ after application of P can be either plus or minus
one, i.e.

P̂ijΨn(~r1, ~ri, . . . , ~rj , . . . , ~rN ) = ±Ψn(~r1, ~ri, . . . , ~rj , . . . , ~rN ). (6.13)

The sign tells what kind of particles one is dealing with.

Sign Spin Particles
+ integer bosons (photons, phonons,He4 atoms, Li, Na, . . .)
− half integer fermions(electrons, He3 atoms, . . .)

Table 6.1: Particle overview, sorted by spin and sign of Ψ after application of the permutation operator

Consequences for fermions

A product wave function can be expressed as

Ψ(α1,α2,...)(~r1, . . . , ~rN ) = φ(α1)(~r1)φ(α2)(~r2) . . . φ(αN )(~rN ) (6.14)

Where α are quantum numbers characterising the N particle state. Assuming the fermionic
case, P̂ can be applied.

P̂ijφ(α1)(~r1) . . . φ(αi)(~ri) . . . φ(αj)(~rj) . . . φ(αN )(~rN ) (6.15)
= −φ(α1)(~r1) . . . φ(αi)(~rj) . . . φ(αj)(~ri) . . . φ(αN )(~rN ) (6.16)

If the particles i and j are in the same quantum state αi = αj = α then

P̂ijφαi(~ri)φαj (~rj)
!= −φαi(~rj)φαj (~ri) (6.17)

= φαj (~rj)φαi(~ri) (6.18)

Which would result in 1 = −1 which means that the assumption was wrong. So what this
shows is that all particles, that have a negative sign when the permutation operator is applied,
can never be in the same state. This is called Pauli’s exclusion principle, which states that all
fermions must be in different states.
In the occupation number picture nα is the occupation number of state α with the normalisation

N =
∞∑
α=1

nα (6.19)

For fermions there can be either one or no particle in any state, nα = 0, 1. For bosons however
there can be any number of particles nα = 0, 1, 2, 3, . . . in any state at the same time.

74



Quantum Statistics

6.2 Boson and Fermion Statistics: General Results

A quantum system of N particles is characterised by the occupation numbers ni of state i and
single particle energy levels εi. The total number of particles N is

N =
∞∑
i=1

ni. (6.20)

And the Hamiltonian H is given by

H({ni}) =
∞∑
i=1

niεi. (6.21)

The partition function ZN is the sum over all distributions ni:

ZN =
∑
{ni}

e−βH({ni}). (6.22)

And the grand canonical partition function Z(z) becomes

Z(z) =
∞∑
N=0

zN
∑
{ni}

e−β
∑

i
εini (6.23)

=
∑
{ni}

z
∑

i
nie−β

∑
i
niεi (6.24)

=
∑
n1

∑
n2

. . . z
∑

i
nie−β

∑
i
niεi (6.25)

=
∑
n1

zn1e−βε1n1
∑
n2

zn2e−βε2n2 . . . (6.26)

so this factorises completely. For fermions this becomes

=
1∑

n1=0
zn1e−βε1n1

1∑
n2=0

zn2e−βε2n2 . . . (6.27)

= (1 + ze−βε1)(1 + ze−βε2) . . . (6.28)

And the grand canonical partition function for fermions becomes

Z(z) =
∞∏
i=1

(1 + ze−βεi) (6.29)

For bosons the grand canonical partition function is

Z(z) =
∞∑

n1=0
zn1e−βε1n1

∞∑
n2=0

zn2e−βε2n2 . . . (6.30)

∞∑
n1=0

zn1e−βε1n1 = 1 + ze−βε1 + (ze−βε1)2 + (ze−βε1)3 + . . . (6.31)

= 1
1− ze−βε1 (6.32)

Z(z) = 1
1− ze−βε1 ·

1
1− ze−βε1 . . . · (6.33)
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And the grand canonical partition function for bosons becomes

Z(z) =
∞∏
i=1

1
1− ze−βεi (6.34)

There is a problem, when ze−βεi → 1 as Z diverges. This results in a phase transition, the Bose-
Einstein condensation. So the grand canonical partition functions Z(z, T, V ) are calculated
exactly for bosons and fermions. And from these all thermodynamic relations can be calculated.
The mean occupation of energy level m is

〈nm〉 =
∑
{nj} nmz

∑
k
nke
−
∑

j
εjnj∑

nj z
∑

k
nke
−β
∑

j
εjnj

(6.35)

= − 1
β

∂

∂εm
ln

∑
nj

z
∑

k
nke
−β
∑

j
εjnj

, (6.36)

〈nm〉 = − 1
β

∂ ln(Z)
∂εm

, (6.37)

ln(Z) = ±
∞∑
i=1

ln
(
1± ze−βεj

)
(6.38)

Here the equation with the plus sign is true for fermions and the one with the minus sign
corresponds to the bosons.

〈nm〉 = ze−βεm

1± ze−βεm (6.39)

= 1
eβεmz−1 ± 1 (6.40)

This is the distribution function for fermions and bosons. The total particle number is

N =
∑
m

〈nm〉 (6.41)

=
∑
m

1
e+βεmz−1 ± 1 . (6.42)

And the internal energy U is

U =
∑
m

〈nm〉εm (6.43)

=
∑
m

εm
e+βεmz−1 ± 1 . (6.44)

(6.45)

6.3 Free Ideal Fermions
How to correctly count quantum states? A normalised plane wave can be written as

φp(~r) = 1√
V
e
i~p~r
~ (6.46)

with ∫
V
d3r|φp(~r)|2 = 1. (6.47)

(6.48)
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So the kinetic energy operator operates on the plane wave such that

− ~2

2m
~∇2φp(~r) = ~p2

2mφp(~r) (6.49)

So φp(~r) are eigenfunctions to the kinetic energy (and many more) operator(s). With periodic
boundary conditions in a box of length L with Volume V = L3 the wave function is invariant
under translation.

φp(~r + Lêx) = φp(~r) (6.50)

This means that

~p = 2π~
L
~n (6.51)

~n =

0, 1, 2, . . .
0, 1, 2, . . .
0, 1, 2, . . .

 (6.52)

So the momentum quantum numbers form a cubic lattice with lattice constant

2π~
L

= h

L
. (6.53)

In the continuum limit L→∞ this becomes.∫
d3p→ (h

L
)3∑

~p

(6.54)

∑
~p

= V

h3

∫
d~p. (6.55)

So for Fermions such as electrons 〈nm〉 is

〈nm〉 = 1
eβεmz−1 + 1 (6.56)

with z ≡ eβεF n(ε) is

n(ε) = 1
1 + eβ(ε−εF ) (6.57)

So the Fermi energy is the chemical potential.

0 2 4 6 8 10
E

0.00

0.25

0.50

0.75

1.00

n

T = 0( )
T1 > 0
T2 > T1

Figure 6.1: Fermi distribution for three different temperatures
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The Fermi energy εF is determined by the total number of particles N . At T = 0 N is

N = g
∑
pi<pF

1, (6.58)

where g is the multiplicity of a state; further

N = gV

h3

∫
|p|<pF

d3p1 (6.59)

= gV

h3
4π
3 p3

F . (6.60)

Using εF = p2
F

2m and the multiplicity which is g = 2 for spin s = 1
2 particles, p3

F is

p3
F = N

V

h3

g

3
4π (6.61)

= (2mεF )
3
2 . (6.62)

and the Fermi energy is

εF = h2

2m

(
N

V

3
4πg

) 2
3
. (6.63)

With the electron mass me = 9 · 10−31kg, Planck’s constant h = 7 · 10−34Js and
n = N

V = 1
(0.3·10−9m)3 the Fermi energy at room temperature is

εF ≈ 2 · 10−19J (6.64)
= 50kBT. (6.65)

So typical electrons in metals are in fact very hot.

6.4 Free Ideal Bosons and Black Body Radiation
From E = mc2 follows

E = mc2 (6.66)

= m0c
2

(1− v2

c2 ) 1
2
, (6.67)

E2
(

1− v2

c2

)
= m2

0c
4 (6.68)

E2 = m2
0c

4 + E2 v
2

c2 (6.69)

= m2
0c

4 +m2v2c2, (6.70)

E =
√
m2

0c
4 + p2c2 (6.71)

So in the non-relativistic limit this becomes

E = m0c
2
√

1 + p2

m2
0c

2 (6.72)

≈ m0c
2 + p2

2m0
, (6.73)

78



Quantum Statistics

where the first term is a constant and the second term is the normal energy-momentum relation.
In the ultra-relativistic limit this becomes

E = pc

√
1 + m2

0c
2

p2 (6.74)

≈ pc, (6.75)

which is the correct limit for photons, which do not have a resting mass. From the ultra-
relativistic dispersion relations the internal energy becomes

U = g
∑
p

εp〈np〉 (6.76)

= g
∑
p

pcze−βpc

1− ze−βpc . (6.77)

Here g is the multiplicity which is g = 2 for photons and U becomes

U = 2 V
h3

∫ ∞
−∞

d3p
|p|ce−β|p|c

1− ze−β|p|c
(6.78)

Here the fugacity z = 1 as µ = 0 and the energy is

U = 2V 4πc
h3

∫ ∞
0

dpp3 e−βpc

1− e−βpc . (6.79)

With p = ~
cω this becomes

U

V
= 8π~4

c3h3

∫ ∞
0

dω
ω3

eβ~ω − 1 (6.80)

≡
∫ ∞

0
dωu(ω) (6.81)

u(ω) = ~
π2c3

ω3

eβ~ω − 1 . (6.82)

Here u(ω) is the spectral energy density. For small ω the denominator eβ~ω − 1 becomes β~ω
and from that the famous Rayleigh-Jeans law

u(ω) ≈ kBTω
2

c3π2 (6.83)

is obtained. For large ω this becomes Wien’s law

u(ω) ≈ ~
π2c3ω

3e−β~ω. (6.84)

The maximum of u(ω) is located at

ωmax = 2.8kBT
~

(6.85)

and shifts to higher frequency with rising temperature. This can be seen in figure 6.2.
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Figure 6.2: Wien’s law for three different temperatures
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7 Appendix

7.1 About this Script
This lecture was given by Prof. Roland Netz in the summer of 2016. This document started off
as private notes that were turned into a full script.
Most of the script was proof read multiple times, but if you find any errors, please mark them

on a printed or PDF version of the script (or in a plain list with page numbers) and send them
to me. I will try to correct them directly. Most importantly we want to correct the contextual
and mathematical errors, but if you find layout errors, wrong labels on figures, simple typos or
wrong commata or anything else, please also send them to me. I hope this script helps you with
your studies :)
Martin Borchert (martin.b@robothek.de)

Update (June 2019): This version includes fully revised chapters 1-3.

7.1.1 Distribution
For the rights about distribution to people outside the physics department or for other uses,
please contact Professor Netz.

7.1.2 Graphs and Figures
All graphs and figures were done in latex via the Tikz package or in python 3 with Matplotlib
(of course via Jupyter Notebook!) or with Inkscape. Note: svg2tikz is an awesome extension
for Inkscape (awesome vector graphics drawing tool) to create Tikz much more easily!
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