Statistical Physics and Thermodynamics (SS 2016)

Problem sheet 3

Hand in: Thursday, May 12 during the lecture

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre/

1 Two normal distributions (10 points)

Consider the two independent normal distributions given by

$$
\begin{equation*}
P_{1}\left(x_{1}\right) \propto \exp \left(-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}\left(x_{2}\right) \propto \exp \left(-\frac{\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right) \tag{2}
\end{equation*}
$$

We are interested in the variable

$$
\begin{equation*}
y=x_{1}+x_{2} . \tag{3}
\end{equation*}
$$

Remark: You don't have to normalize the distributions/characteristic functions for this exercise.
a) Calculate $P(y)$ explicitly by evaluating the integral

$$
\begin{equation*}
P(y)=\int d x_{1} \int d x_{2} P\left(x_{1}\right) P\left(x_{2}\right) \delta\left(x_{1}+x_{2}-y\right) \tag{4}
\end{equation*}
$$

What is the resulting distribution? Read off the mean value and the variance. Assume for simplicity $\mu_{1}=$ $-\mu_{2} \equiv \mu$ and $\sigma_{1}=\sigma_{2} \equiv \sigma$ (only for this task). You don't need to keep track of the normalization factor (which can be a bit lengthy). (2 points)
b) Show that $\left\langle x_{1} x_{2}\right\rangle=\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle$. (1 point)
c) Now calculate the mean value $\langle y\rangle$ and the variance $\left\langle y^{2}\right\rangle-\langle y\rangle^{2}$ directly by expressing y in terms of x_{1} and x_{2} and by using $\langle f+g\rangle=\langle f\rangle+\langle g\rangle$ as well as your result from (b). Express the result in terms of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$ and compare to your result from (a). (2 points)
d) Calculate the characteristic functions $g_{i}(k)$ for $P_{i}\left(x_{i}\right)$. (2 points)
e) Check your result from (d) by calculating $\left\langle x_{i}\right\rangle$ and $\left\langle x_{i}^{2}\right\rangle_{C}$ from $g_{i}(k)$. (1 point)
f) What is the characteristic function $G(k)$ of $P(y)$? (1 point)
g) Calculate the mean value and the variance of y from the characteristic function $G(k)$. (1 point)

2 Uniform distributions (10 points)

Now consider the uniform probability distribution

$$
P(x)=\left\{\begin{array}{cc}
1 & 0 \leq x \leq 1 \tag{5}\\
0 & \text { otherwise }
\end{array}\right.
$$

a) Calculate the characteristic function $g(k)$ for $P(x)$. (2 points)
b) Now consider m independent variables x_{i}, with probabilities $P\left(x_{i}\right)$ according to eq. (5). Calculate the characteristic function $G_{m}^{z}(k)$ for the variable

$$
\begin{equation*}
z=\sum_{i=1}^{m} x_{i} . \tag{6}
\end{equation*}
$$

(1 point)

c) Calculate the mean value from the characteristic function for the distribution with $m=2$. ($\mathbf{3}$ points)
d) Introduce $y=z / m$. What is the characteristic function $G_{m}^{y}(k)$ for y ? (1 point)
e) Expand $\exp (-i k / m)$ to second order and use the identity

$$
\begin{equation*}
\exp (x)=\lim _{m \rightarrow \infty}\left(1+\frac{x}{m}\right)^{m} \tag{7}
\end{equation*}
$$

to calculate the characteristic function

$$
\begin{equation*}
G_{\infty}^{y}(k) \equiv \lim _{m \rightarrow \infty} G_{m}^{y}(k) \tag{8}
\end{equation*}
$$

Interpret your result. (3 points)

