Freie Universität Berlin Fachbereich Physik July 5th 2016 Prof. Dr. Roland Netz Douwe Bonthuis Jan Daldrop Sadra Kashef

Statistical Physics and Thermodynamics (SS 2016)

Problem Sheet 12

Hand in: Thursday, July 14th during the lecture

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre/

1. Kinetic & Potential Energies (4 points)

Consider a non-ideal system with particles interacting via power laws $\omega(q_1 - q_2) = |q_1 - q_2|^n$, where the Hamiltonian of such a system is expressed as: $\mathcal{H} = \mathcal{H}_{kin} + \mathcal{H}_{pot}$. The internal energy is therefore equal to $U = \langle \mathcal{H} \rangle = k_B T \frac{3N}{n} (1 + \frac{n}{2}) - \frac{3}{n} VP$ as we derived in the lecture.

- a) Calculate $\langle \mathcal{H}_{kin} \rangle$ and $\langle \mathcal{H}_{pot} \rangle$ for this system.
- b) Show that for n=0 we retrieve the $\langle \mathcal{H}_{kin} \rangle$, $\langle \mathcal{H}_{pot} \rangle$ and U of an ideal gas.
- c) Find $\langle \mathcal{H}_{kin} \rangle$, $\langle \mathcal{H}_{pot} \rangle$ and U for n=-1.

2. Third Virial Coefficient: Hard-Sphere Potential (8 points)

In the lecture we obtained the first and the second virial coefficients a_1 and a_2 for a non-ideal system with hard-sphere potential:

$$\omega(q_1 - q_2) = \begin{cases} \infty & |q_1 - q_2| < d \\ 0 & |q_1 - q_2| > d \end{cases}$$
(1)

Where a_l coefficients are obtained in terms of b_l coefficients using the following relations:

$$\frac{P}{k_B T} = \sum_l (\frac{z}{\lambda_t^3})^l b_l$$
$$\frac{P}{k_B T} = \sum_l a_l c^l$$
$$c = \sum_l l(\frac{z}{\lambda_t^3})^l b_l$$

Therefore we obtain:

$$a_1 = b_1 = 1$$

$$a_2 = -b_2 = -\frac{1}{2V} \int d^3 q_1 d^3 q_2 [F_{12}]$$

The third coefficient a_3 could be written as $a_3 = 4b_2^2 - 2b_3$ where $b_3 = \frac{1}{6V} \int d^3q_1 d^3q_2 d^3q_3 [F_{12}F_{13}F_{23} + 3F_{12}F_{23}]$ and $F_{ij} = e^{-\beta\omega(q_i - q_j)} - 1$.

Calculate the third virial coefficient a_3 .

3. Virial Coefficients: Square Potential (8 points)

Consider a potential in the form:

$$\omega(r) = \begin{cases} \infty & 0 < r < \sigma \\ -E & \sigma < r < \sigma' \\ 0 & \sigma' < r < \infty \end{cases}$$
(2)

a) Calculate the first and the second virial coefficients a_1 and a_2 for this potential.

b) How does a_2 behave in the high temperature limit? Which term is dominant?

C) How about low temperature? Explain which part of the potential is dominant.

d) Calculate the isothermal compressibility $\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial P}\Big|_{T,V}$ to the second order.

Step by Step Hints for Q2

1) Show that you can re-write the b_3 as the $b_3 = \frac{1}{6} \int d\vec{r}_{12} d\vec{r}_{13} [f(r_{12})f(r_{13})f(r_{23}) + 3f(r_{12})f(r_{23})]$. Where $f(r_{ij}) = F_{ij} = e^{-\beta\omega(r_{ij})} - 1$ and $\vec{r}_{ij} = \vec{q}_1 - \vec{q}_2$. Please note that $d\vec{r}_{ij}$ is in 3-dimensions.

2) The Fourier transform $\tilde{f}(k)$ is defined as $\tilde{f}(k) = \int d\vec{r} e^{i\vec{k}\vec{r}} f(r)$. The reverse Fourier transform is $f(r) = \int \frac{d\vec{k}}{(2\pi)^3} e^{-i\vec{k}\vec{r}} \tilde{f}(k)$

3) Write down the reverse Fourier transform of $f(r_{12})$, $f(r_{13})$ and $f(r_{23})$ and substitute them into the eq. for b_3 . (Remember to use k, k' and k'' respectively)

4) Use the relation $\vec{r}_{23} = \vec{r}_{13} - \vec{r}_{12}$.

5) Use the definition of the Dirac delta function in three dimensions $\delta(\vec{r}) = \int \frac{d\vec{k}}{(2\pi)^3} e^{-i\vec{k}\cdot\vec{r}}$

6) Based on the definition of the delta function we have $\int d\vec{k} \tilde{f}(k) \delta(\vec{k} - \vec{a}) = \tilde{f}(a)$.

7) Show that you can write $\tilde{f}(k) = \int d\vec{r} e^{i\vec{k}\vec{r}} f(r) = \frac{4\pi}{k} \int_0^\infty dr r f(r) \sin(kr)$. (Just show a few first steps how you transform to $dr \ d\theta$ and $d\phi$, you do NOT need to show the integration steps)

8) Show that $\tilde{f}(-k) = \tilde{f}(k)^*$ and $\tilde{f}(k)^* = \tilde{f}(k)$. (Note that $\tilde{f}(k)^*$ is the complex conjugate of $\tilde{f}(k)$)

- 9) Use the following $\tilde{f}(k)=\frac{4\pi}{k}\int_{0}^{a}dr\,rf(r)\sin(kr)=4\pi\frac{\sin(ak)-ak\cos(ak)}{k^{3}}$
- 10) Use $\int dk \, k^2 \left[\frac{\sin(ak) ak\cos(ak)}{k^3}\right]^3 = \frac{5}{96}a^6\pi$