Statistical Physics and Thermodynamics (SS 2016)

Problem Sheet 12

Hand in:Thursday, July 14th during the lecture
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre/

1. Kinetic \& Potential Energies (4 points)

Consider a non-ideal system with particles interacting via power laws $\omega\left(q_{1}-q_{2}\right)=\left|q_{1}-q_{2}\right|^{n}$, where the Hamiltonian of such a system is expressed as: $\mathcal{H}=\mathcal{H}_{k i n}+\mathcal{H}_{p o t}$. The internal energy is therefore equal to $U=<\mathcal{H}\rangle=k_{B} T \frac{3 N}{n}\left(1+\frac{n}{2}\right)-\frac{3}{n} V P$ as we derived in the lecture.
a) Calculate $<\mathcal{H}_{\text {kin }}>$ and $<\mathcal{H}_{p o t}>$ for this system.
b) Show that for $\mathrm{n}=0$ we retrieve the $\left.<\mathcal{H}_{\text {kin }}\right\rangle,<\mathcal{H}_{p o t}>$ and U of an ideal gas.
c) Find $\left.\left\langle\mathcal{H}_{k i n}\right\rangle,<\mathcal{H}_{p o t}\right\rangle$ and U for $\mathrm{n}=-1$.

2. Third Virial Coefficient: Hard-Sphere Potential (8 points)

In the lecture we obtained the first and the second virial coefficients a_{1} and a_{2} for a non-ideal system with hard-sphere potential:

$$
\omega\left(q_{1}-q_{2}\right)=\left\{\begin{array}{cc}
\infty & \left|q_{1}-q_{2}\right|<d \tag{1}\\
0 & \left|q_{1}-q_{2}\right|>d
\end{array}\right.
$$

Where a_{l} coefficients are obtained in terms of b_{l} coefficients using the following relations:

$$
\begin{gathered}
\frac{P}{k_{B} T}=\sum_{l}\left(\frac{z}{\lambda_{t}^{3}}\right)^{l} b_{l} \\
\frac{P}{k_{B} T}=\sum_{l} a_{l} c^{l} \\
c=\sum_{l} l\left(\frac{z}{\lambda_{t}^{3}}\right)^{l} b_{l}
\end{gathered}
$$

Therefore we obtain:

$$
\begin{gathered}
a_{1}=b_{1}=1 \\
a_{2}=-b_{2}=-\frac{1}{2 V} \int d^{3} q_{1} d^{3} q_{2}\left[F_{12}\right]
\end{gathered}
$$

The third coefficient a_{3} could be written as $a_{3}=4 b_{2}^{2}-2 b_{3}$ where $b_{3}=\frac{1}{6 V} \int d^{3} q_{1} d^{3} q_{2} d^{3} q_{3}\left[F_{12} F_{13} F_{23}+3 F_{12} F_{23}\right]$ and $F_{i j}=e^{-\beta \omega\left(q_{i}-q_{j}\right)}-1$.

Calculate the third virial coefficient a_{3}.

3. Virial Coefficients: Square Potential (8 points)

Consider a potential in the form:

$$
\omega(r)=\left\{\begin{array}{cc}
\infty & 0<r<\sigma \tag{2}\\
-E & \sigma<r<\sigma^{\prime} \\
0 & \sigma^{\prime}<r<\infty
\end{array}\right.
$$

a) Calculate the first and the second virial coefficients a_{1} and a_{2} for this potential.
b) How does a_{2} behave in the high temperature limit? Which term is dominant?
C) How about low temperature? Explain which part of the potential is dominant.
d) Calculate the isothermal compressibility $\kappa_{T}=-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T, V}$ to the second order.

${ }^{* * *}$ Step by Step Hints for Q2 ${ }^{* * *}$

1) Show that you can re-write the b_{3} as the $b_{3}=\frac{1}{6} \int d \vec{r}_{12} d \vec{r}_{13}\left[f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{23}\right)+3 f\left(r_{12}\right) f\left(r_{23}\right)\right]$. Where $f\left(r_{i j}\right)=F_{i j}=e^{-\beta \omega\left(r_{i j}\right)}-1$ and $\vec{r}_{i j}=\vec{q}_{1}-\vec{q}_{2}$. Please note that $d \vec{r}_{i j}$ is in 3-dimensions.
2) The Fourier transform $\tilde{f}(k)$ is defined as $\tilde{f}(k)=\int d \vec{r} e^{i \vec{k} \vec{r}} f(r)$. The reverse Fourier transform is $f(r)=$ $\int \frac{d \vec{k}}{(2 \pi)^{3}} e^{-i \vec{k} \vec{r}} \tilde{f}(k)$
3) Write down the reverse Fourier transform of $f\left(r_{12}\right), f\left(r_{13}\right)$ and $f\left(r_{23}\right)$ and substitute them into the eq. for b_{3}. (Remember to use k, k^{\prime} and $k^{\prime \prime}$ respectively)
4) Use the relation $\vec{r}_{23}=\vec{r}_{13}-\vec{r}_{12}$.
5) Use the definition of the Dirac delta function in three dimensions $\delta(\vec{r})=\int \frac{d \vec{k}}{(2 \pi)^{3}} e^{-i \vec{k} \vec{r}}$
6) Based on the definition of the delta function we have $\int d \vec{k} \tilde{f}(k) \delta(\vec{k}-\vec{a})=\tilde{f}(a)$.
7) Show that you can write $\tilde{f}(k)=\int d \vec{r} e^{i \vec{k} \vec{r}} f(r)=\frac{4 \pi}{k} \int_{0}^{\infty} d r r f(r) \sin (k r)$. (Just show a few first steps how you transform to $d r d \theta$ and $d \phi$, you do NOT need to show the integration steps)
8) Show that $\tilde{f}(-k)=\tilde{f}(k)^{*}$ and $\tilde{f}(k)^{*}=\tilde{f}(k)$. (Note that $\tilde{f}(k)^{*}$ is the complex conjugate of $\left.\tilde{f}(k)\right)$
9) Use the following $\tilde{f}(k)=\frac{4 \pi}{k} \int_{0}^{a} d r r f(r) \sin (k r)=4 \pi \frac{\sin (a k)-a k \cos (a k)}{k^{3}}$
10) Use $\int d k k^{2}\left[\frac{\sin (a k)-a k \cos (a k)}{k^{3}}\right]^{3}=\frac{5}{96} a^{6} \pi$
