Exam: Advanced Statistical Physics Part II: Problems (75P)

1 Lenoir Cycle (25P)

Consider 1 mol of an ideal gas, which initially has a volume V_{1} and temperature T_{1} at pressure p_{1}. The gas undergoes the following cyclic process:
$1 \rightarrow 2$: isochoric (constant V) heating to T_{2}
$2 \rightarrow 3$: isentropic expansion to V_{3}
$3 \rightarrow 1$: isobaric cooling
a) Sketch the P-V and the T-S diagram for this cyclic process.
b) For each step calculate the performed work W and the heat transfer Q in terms of p_{1}, V_{1} and V_{3}.
c) Calculate the efficiency η in terms of $\alpha=V_{3} / V_{1}$.

2 Adsorption (25P)

Consider an ideal gas (temperature T, chemical potential μ) in contact with a surface with N adsorption sites. Each adsorption site may be occupied by 0,1 or 2 gas molecules. The energy of a vacant site is zero, the energy with one adsorbed molecule is $-\epsilon$ and the energy with two adsorbed molecules is $-(3 / 2) \epsilon$. ϵ can be positive or negative. There is no interaction between molecules at different adsorption sites.
a) Calculate the grand canonical partition function for a fixed number N of adsorption sites.
b) Use the grand canonical partition function to derive the mean number of adsorbed particles per site $\langle n\rangle$ and the mean internal energy per site $\langle u\rangle$ as a function of T, μ and ϵ.
c) For $T=0$ sketch $\langle n\rangle$ for constant μ as a function of ϵ.
d) Calculate $\langle n\rangle$ for large temperatures. (No corrections in T are necessary.)

3 Spin 1/2 Fermions in an External Magnetic Field in 2 Dimensions (25P)

Consider an ideal gas of N spin $1 / 2$ Fermions at zero temperature confined to an area A in two dimensions. The Fermions are in an external magnetic field H. The energy of a particle is $\epsilon=\frac{p^{2}}{2 m} \pm \mu_{B} H$, where μ_{B} is the Bohr magneton.
a) Give an expression for the chemical potential μ_{0} for vanishing magnetic field as a function of the particle density N / A.
b) Calculate the average particle energy as a function of μ_{0} for weak external magnetic fields. Calculate corrections in H up to second order.
c) Calculate the susceptibility $\chi=\partial m / \partial H$ for weak external magnetic fields.

