Prof. Dr. Roland Netz
Julius Schulz, Klaus Rinne

Second Chance Exam Solutions: Advanced Statistical Physics Part II: Problems (75P)

1 Three-Spin Interaction (20P)

Consider a one dimensional system of N spins with the following Hamiltonian:

$$
H=-J \sum_{i=1}^{N-2} S_{i} S_{i+1} S_{i+2}
$$

with $S_{i}= \pm 1, i=1 \ldots N$ being the spin states and $J=$ const being an interaction parameter. Assume open boundary conditions (not periodic!).

Calculate the canonical partition function and the Helmholtz free energy F. What is the thermodynamic limit of F ?

Hint: The transfer-matrix method is not necessary for this problem.
The definition of the cosinus hyperbolicus may be helpful:

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

$$
\begin{aligned}
Z_{N} & =\sum_{S_{1}, \ldots, S_{N}} e^{\beta J \sum_{i=1}^{N-2} S_{i} S_{i+1} S_{i+2}} \\
& =\sum_{S_{1}, \ldots, S_{N-1}} e^{\beta J \sum_{i=1}^{N-3} S_{i} S_{i+1} S_{i+2}} \sum_{S_{N}} e^{\beta J S_{N-2} S_{N-1} S_{N}} \\
& =\sum_{S_{1}, \ldots, S_{N-1}} e^{\beta J \sum_{i=1}^{N-3} S_{i} S_{i+1} S_{i+2}} 2 \cosh (\beta J) \\
& =\sum_{S_{1}, S_{2}, S_{3}} e^{\beta J S_{1} S_{2} S_{3}}(2 \cosh (\beta J))^{N-3} \\
& =4(2 \cosh (\beta J))^{N-2}
\end{aligned}
$$

Therefore the Helmholtz free energy is:

$$
F=-\frac{1}{\beta} \ln Z_{N}=-\frac{1}{\beta}(\ln 4+(N-2) \ln (2 \cosh (\beta J)))
$$

For the thermodynamic limit we get:

$$
\lim _{N \rightarrow \infty} F=-\frac{N}{\beta} \ln (2 \cosh (\beta J))
$$

2 Liquid-Gas Phase-Transition (25P)

We want to consider a substance with the enthalpy of the liquid phase

$$
H_{l}(p, S)=2(\operatorname{ap} S N)^{1 / 2}
$$

and the enthalpy of the gas phase

$$
H_{g}(p, S)=3\left(\frac{p S}{2}\right)^{2 / 3}(b N)^{1 / 3}
$$

where $a>0$ and $b>0$ are constants, S is the total entropy of the system, p is the pressure and N is the total number of particles.
a) Calculate the liquid-gas coexistence temperature T_{g} as a function of pressure. (16P)

We have to perform a Legrende-Transformation from $H(S, p)$ to $G(T, p)=H-T S$ with $T=\partial H / \partial S$:
liquid phase:

$$
\begin{align*}
T & =\partial H_{l} / \partial S=\sqrt{\frac{a N p}{S}} \tag{1}\\
\Rightarrow S & =\frac{a N p}{T^{2}} \tag{2}\\
G_{l}(T, p) & =2 a N \frac{p}{T}-a N \frac{p}{T}=a N \frac{p}{T} \tag{3}\\
g_{l}(T, p) & =G_{l} / N=a \frac{p}{T} \tag{4}
\end{align*}
$$

gas phase:

$$
\begin{align*}
T & =\partial H_{g} / \partial S=2\left(\frac{p}{2}\right)^{2 / 3}\left(\frac{b N}{S}\right)^{1 / 3} \tag{5}\\
\Rightarrow S & =2 b N \frac{p^{2}}{T^{3}} \tag{6}\\
G_{g}(T, p) & =3 b N \frac{p^{2}}{T^{2}}-2 b N \frac{p^{2}}{T^{2}}=b N \frac{p^{2}}{T^{2}} \tag{7}\\
g_{g}(T, p) & =G_{g} / N=b \frac{p^{2}}{T^{2}} \tag{8}
\end{align*}
$$

At the phase coexistence line we have:

$$
\begin{align*}
g_{l}\left(T_{v}, p_{v}\right) & =g_{g}\left(T_{v}, p_{v}\right) \tag{9}\\
\Rightarrow a \frac{p_{v}}{T_{v}} & =b \frac{p_{v}^{2}}{T_{v}^{2}} \tag{10}\\
\Rightarrow T_{v} & =p_{v} \frac{b}{a} \tag{11}
\end{align*}
$$

b) Calculate the densities of the liquid and the gas phase at the phase transition line. (6P) liquid phase:

$$
\begin{align*}
V_{l} & =\partial G_{l} / \partial p=\frac{a N}{T_{v}} \tag{12}\\
\Rightarrow \rho_{l} & =N / V_{l}=\frac{T_{v}}{a} \tag{13}
\end{align*}
$$

gas phase:

$$
\begin{align*}
V_{g} & =\partial G_{g} / \partial p=\frac{2 b N p_{v}}{T_{v}^{2}} \stackrel{(11)}{=} \frac{2 a N}{T} \tag{14}\\
\Rightarrow \rho_{g} & =N / V_{g}=\frac{T_{v}}{2 a} \tag{15}
\end{align*}
$$

c) Calculate the entropy change per volume $\Delta S / \Delta V$ at the phase transition line. (3P)

We can use Clausius-Clapeyron:

$$
\begin{equation*}
\frac{\Delta S}{\Delta V}=\frac{\Delta S / N}{\Delta V / N}=\Delta s / \Delta v=\frac{\mathrm{d} p_{v}}{\mathrm{~d} T_{v}} \stackrel{(11)}{=} \frac{a}{b} \tag{16}
\end{equation*}
$$

3a Wien's Law in n Dimensions (15P)

$u(\omega)$ is the energy density of black body radiation at angular frequency ω per volume and angular frequency, i.e. the spectral density of the internal energy density U / V.

Determine $u(\omega)$ in n dimensions in the low temperature limit.
The volume of an n-dimensional sphere is $C_{n} R^{n}$, where R is the radius. You do not have to determine C_{n}.

$$
\begin{align*}
U & =2 \frac{V}{h^{n}} \int \mathrm{~d}^{n} p \frac{e^{-\beta p c}}{1-e^{-\beta p c}} p c \tag{17}\\
& =2 \frac{V}{h^{n}} C_{n} \int \mathrm{~d} p \frac{e^{-\beta p c}}{1-e^{-\beta p c}} n p^{n-1} p c \tag{18}\\
& =2 n \frac{c V}{h^{n}} C_{n} \int \mathrm{~d} p \frac{e^{-\beta p c}}{1-e^{-\beta p c}} p^{n} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
p c=\hbar \omega \Rightarrow \mathrm{d} p=\frac{\hbar}{c} \mathrm{~d} \omega \tag{20}
\end{equation*}
$$

$$
\begin{align*}
\Rightarrow U & =2 n \frac{c V}{h^{n}} C_{n} \int \mathrm{~d} \omega \frac{\hbar}{c} \frac{e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}\left(\frac{\hbar \omega}{c}\right)^{n} \tag{21}\\
& =2 n \frac{V \hbar}{(2 \pi c)^{n}} C_{n} \int \mathrm{~d} \omega \frac{e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}} \omega^{n} \tag{22}
\end{align*}
$$

For $\beta \hbar \omega \gg 1$ we can approximate $1-e^{-\beta \hbar \omega} \approx 1$:

$$
\begin{align*}
\Rightarrow U & =2 n \frac{V \hbar}{(2 \pi c)^{n}} C_{n} \int \mathrm{~d} \omega e^{-\beta \hbar \omega} \omega^{n} \tag{23}\\
\frac{U}{V} & =\int \mathrm{d} \omega u(\omega) \tag{24}\\
\Rightarrow u(\omega) & =2 n \frac{\hbar}{(2 \pi c)^{n}} C_{n} e^{-\beta \hbar \omega} \omega^{n} \tag{25}
\end{align*}
$$

3b Cosmic Background Radiation (15P)

The universe is filled with a photon gas that corresponds to black body ratiation of temperature $T_{\text {present }}=3 \mathrm{~K}$. In a simple view, this radiation arose from the isentropic expansion of a much hotter photon cloud, which was produced during the big bang.

If the volume of the universe, and thus the volume of the photon gas, increases isentropically by a factor of two starting from the present state, what will be the final temperature of the photon gas?

Hint: The Stefan-Boltzmann law can be useful.
Stefan-Boltzmann law: $U \propto V T^{4}$
The total differential is

$$
\begin{align*}
\mathrm{d} U & =T \mathrm{~d} S+p \mathrm{~d} V \tag{26}\\
\Rightarrow T & =\left(\frac{\partial U}{\partial S}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial S}\right)_{V} \tag{27}\\
\Rightarrow\left(\frac{\partial S}{\partial T}\right)_{V} & =\frac{1}{T}\left(\frac{\partial U}{\partial T}\right)_{V} \tag{28}\\
\Rightarrow S \propto V T^{3} & \tag{29}
\end{align*}
$$

isentropic: $\mathrm{dS}=0$

$$
\begin{align*}
\Rightarrow V_{1} T_{1}^{3} & =V_{2} T_{2}^{3} \tag{30}\\
\Rightarrow T_{2} & =T_{1}\left(V_{1} / V_{2}\right)^{1 / 3}=T_{1} 2^{-1 / 3} \tag{31}
\end{align*}
$$

