Advanced Statistical Physics II - Supplement for Problem Sheet 7

1 Line integrals

Recall the definition of a line integral in the complex plane along a curve
$\gamma:[a, b] \ni s \mapsto \gamma(s) \in \mathbb{C}$

$$
\begin{equation*}
\int_{\gamma} d z f(z):=\int_{a}^{b} d s f(\gamma(s)) \frac{d \gamma(s)}{d s} \tag{1}
\end{equation*}
$$

The curve is called simple if it does not intersect itself (The curves we will be considering are all simple). If the curved is closed, its start and end point coincice, i.e. $\gamma(a)=\gamma(b)$, and we use the following notation for integrals along this curve:

$$
\begin{equation*}
\oint_{\gamma} d z f(z) \tag{2}
\end{equation*}
$$

As an example, consider a (closed) curve describing a circle of radius r around the origin.

$$
\begin{equation*}
\gamma_{+}^{r}(s)=r e^{i s}, \quad s \in[0,2 \pi] \tag{3}
\end{equation*}
$$

Note that the circle is traversed counter-clockwise ("positive orientation"), while a different parametrization

$$
\begin{equation*}
\gamma_{-}^{r}(s)=r e^{-i s}, \quad s \in[0,2 \pi] \tag{4}
\end{equation*}
$$

gives a negatively oriented circle. The orientation of curve is important for getting the correct signs of expressions when doing contour integration. Consider the function $f(z)=1 / z$.

$$
\begin{equation*}
\oint_{\gamma_{+}^{r}} d z f(z)=\oint_{\gamma_{+}^{r}} \frac{d z}{z}=\int_{0}^{2 \pi} d s \frac{i r e^{i s}}{r e^{i s}}=2 \pi i \tag{5}
\end{equation*}
$$

while for the negative (clockwise) orientation we get

$$
\begin{equation*}
\oint_{\gamma_{-}^{r}} d z f(z)=\oint_{\gamma_{-}^{r}} \frac{d z}{z}=\int_{0}^{2 \pi} d s \frac{-i r e^{-i s}}{r e^{-i s}}=-2 \pi i \tag{6}
\end{equation*}
$$

For the case $f(z)=z^{n}$ where $n \in \mathbb{Z}$ is now an arbitrary integer, we get by a similar calculation

$$
\oint_{\gamma_{ \pm}^{\prime}} d z f(z)=\oint_{\gamma_{ \pm}^{r}} \frac{d z}{\left(z-z_{0}\right)^{n}}= \begin{cases} \pm 2 \pi i, & n=1 \tag{7}\\ 0, & \text { else }\end{cases}
$$

where the circle $\gamma_{ \pm}^{r}$ is now centered at z_{0}, i.e $\gamma_{ \pm}^{r}(s)=z_{0}+r e^{ \pm i s}$.
Now consider a function of the form

$$
\begin{equation*}
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}} \tag{8}
\end{equation*}
$$

where g is a holomorphic function, which means that it can be expanded in a power series around every point z_{0} in the complex plane:

$$
\begin{align*}
& g(z) \tag{9}
\end{align*}=a_{-n}+\cdots+a_{-1}\left(z-z_{0}\right)^{n-1}+a_{0}\left(z-z_{0}\right)^{n}+a_{1}\left(z-z_{0}\right)^{n+1}+\ldots .
$$

Integrating f around a circle centered at z_{0} we get by application of (7)

$$
\begin{equation*}
\oint_{\gamma_{ \pm}^{r}} d z f(z)= \pm 2 \pi i a_{-1} \tag{11}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
a_{-1}=\left.\frac{1}{(n-1)!} \frac{d^{n-1} g(z)}{d z^{n-1}}\right|_{z=z_{0}}=\left.\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z)\right|_{z=z_{0}}=\operatorname{Res}\left(f, z_{0}\right) \tag{12}
\end{equation*}
$$

where we introduced the residue $\operatorname{Res}\left(f, z_{0}\right)$, which is just another name for the expansion coefficient a_{-1}. For the case of a positively oriented circle we get

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma_{+}^{r}} d z f(z)=\operatorname{Res}\left(f, z_{0}\right) \tag{13}
\end{equation*}
$$

Remark Everything we did above for circles, also holds for arbitrary simple closed curves, as long as they are sufficiently smooth etc. (See a textbook on complex analysis for the mathematical details). Eventually, this leads to the Residue theorem:

$$
\begin{equation*}
\oint_{\gamma} d z f(z)=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) \tag{14}
\end{equation*}
$$

where the simple, closed curve γ winds counter-clockwise around a region containing the poles z_{k}. In the more general case, in which γ may be also negatively oriented we get

$$
\begin{equation*}
\oint_{\gamma} d z f(z)= \pm 2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) \tag{15}
\end{equation*}
$$

where we have + for positive and - for negative orientation of γ.

Watch out for the orientation of the curves when doing the problems!

