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Todo list

Specific Quantities
These specific quantities as defined here do not depend on space any more,
e.g. S does not depend on space, because it is the total entropy and it’s the
same for M . In principle one could talk about small volume elements large
enough that thermodynamics makes sense but small enough to be regarded as
points and space and redefine the specific quantities using these small volume
elements. Reference: Risken . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Curie Principle.
This is not really clear yet and it could just be left out. . . . . . . . . . . . . 40

Harmonic Oscillator Response.
I calculated x0 by the definition x(t) =

´
K(t − t′)F (t′)dt′ = x0e

iωt and
F (t) = F0e

iωt which resulted in a different result, i.e. x0 = F0K
∗(ω), this

would replace −iγω by +iγω in the following, which would then also result
in two positive Lorentzians for zero mas limit for K’ and K” . . . . . . . . . 49

Minus Sign.
what we already talked about: the minus sign in the definition of the friction
force here, causes a wrong sign in the fluc-dis-t later. . . . . . . . . . . . . . 61

FP derivation
we still want to do this more explicitly and more clear, when we also have
written something abut gaussian integrals in the appendix. . . . . . . . . . . 79

Poincare Recurrence.
Look up in book and write down an example . . . . . . . . . . . . . . . . . 115
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Chapter 1
Thermostatics

1.1. Equation of state

We wish to recall the basics of thermostatics starting from the internal energy of the
system U(V, S,N) which we write in the differential form

dU =

(
∂U

∂V

)
S,N

dV +

(
∂U

∂S

)
V,N

dS +

(
∂U

∂N

)
S,V

dN (1.1)

In this equation there are all the thermodynamic informations. Writing

dU = −pdV + TdS + µdN (1.2)

we can identify

T =

(
∂U

∂S

)
V,N

−p =

(
∂U

∂V

)
S,N

µ =

(
∂U

∂N

)
S,V

(1.3)

and then get the differential form of the entropy S(U, V,N)

dS =
1

T
dU +

p

T
dV − µ

T
dN (1.4)

With the Legendre transformations for the internal energy we obtain the Helmholtz free
energy, the Enthalpy and the Gibbs free energy respectively given by

dF = d(U − TS) = −pdV − SdT + µdN (1.5)

dH = d(U + pV ) = V dp+ TdS + µdN (1.6)
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1. Thermostatics

dG = d(U − TS + pV ) = V dp− SdT + µdN (1.7)

Because G depends only on extensive variables we can assume G ∼ N . From the differ-
ential expression of G it follows ∂G/∂N = µ and then one gets G = µN . Differentiating
this results gives

dG = µdN +Ndµ = V dp− SdT + µdN (1.8)

from which it follows the Gibbs-Duhem relation

Ndµ = V dp− SdT (1.9)

There are also 4 additional potentials: Ω(T, V, µ), R(S, V, µ), J(S, p, µ), K(T, p, µ). The
grand potential, sometimes called the Landau free energy, is defined by

Ω = U − TS − µN = F − µN = F −G = −pV (1.10)

Starting from U(S, V,N) we can generate 23 = 8 potentials, which in principle can be
done also from S(U, V,N), V (U, S,N) and N(U, V, S).

Maxwell relations are conditions equating certain derivatives of state variables which
follow from the exactness of the differentials of the various state functions. Taking the
mixed second derivatives of (1.2) and using (1.3), we find

∂2U

∂S∂V
=

(
∂T

∂V

)
S,N

= −
(
∂p

∂S

)
V,N

=
∂2U

∂V ∂S
(1.11)

∂2U

∂S∂N
=

(
∂T

∂N

)
S,V

=

(
∂µ

∂S

)
V,N

(1.12)

∂2U

∂V ∂N
= −

(
∂p

∂N

)
S,V

=

(
∂µ

∂V

)
S,N

(1.13)

In the following we consider a system with a fixed number of particles. From the previous
results we have (

∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(1.14)

For a gas p, V, T are easy to measure and the functional relation is unique so that
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1.1. Equation of state

p(V, T ) = −
(
∂F

∂V

)
T

(1.15)

V (p, T ) =

(
∂G

∂p

)
T

(1.16)

T (p, V ) =

(
∂H

∂S

)
p

(1.17)

Then the equation of state (1.2) follows from first derivatives of the potentials but it
does not describe the thermodynamics completely. For example given p(V, T ) if we want
to calculate F (V, T ) we need the expression for the entropy S(V, T ).

We define the response functions with the second derivatives of the thermodynamic
potentials as

κT = − 1

V

(
∂V

∂p

)
T

= − 1

V

∂2G

∂p2
isothermal compressibility

κS = − 1

V

(
∂V

∂p

)
S

= − 1

V

∂2H

∂p2
adiabatic compressibility

αP =
1

V

(
∂V

∂T

)
p

thermal expansivity

(1.18)

(1.19)

(1.20)

Then we can express the volume differential as function of this quantities

dV (p, T,N) = −V κTdp+ V αPdT + ρdN (1.21)

where ρ = V/N is the particles density.

Recall the first law as a statement of energy conservation in a differential form

dU = δQ− δW (1.22)

where the work δW = −pdV +µdN in this equation is considered as done by the system
since it has a minus sign in front. While the second law of thermodynamics states that

dS ≥ δQ

T
(1.23)

The heat capacity of a body is the ratio of the amount of heat absorbed by the body
to the associated infinitesimal change in temperature
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1. Thermostatics

CV =

(
δQ

dT

)
V

=

(
∂U

∂T

)
V

(1.24)

Cp =

(
δQ

dT

)
p

=

(
∂U

∂T

)
p

+p

(
∂V

∂T

)
p

(1.25)

1.2. Equilibrium conditions

Consider a closed system with fixed particles number which is thermally isolated (i.e.
no heat exchange with the exterior). If the system is in a thermal bath with a reservoir
at fixed temperature T0 from the second law of thermodynamics

dST = dS + dS0 ≥
δQ

T
= 0 (1.26)

and also

dU + dU0 = 0 (1.27)

where the zero lower index denotes the reservoir quantities. From (1.22) it follows

dS0 =
δQ

T0

=
dU0

T0

= −dU
T0

(1.28)

where δQ is the amount of heat absorbed by the reservoir from the system. Then the
second law becomes

dS + dS0 = dS − dU

T0

≥ 0 (1.29)

From this equation it follows that the Helmholtz free energy is minimized since using
the definition (1.5) we have dF = d(U − T0S) ≤ 0.

Let’s now consider a system divided in two equal parts. Then, being an extensive
quantity, the Helmholtz free energy is F (N, V, T ) = 2F (N

2
, V

2
, T ). We consider per-

turbation δ away from equilibrium keeping N and T fixed, and using the fact that at
equilibrium F is minimized we can write

F

(
N

2
,
V

2
+ δV, T

)
+F

(
N

2
,
V

2
− δV, T

)
≥ F (N, V, T ) = 2F

(
N

2
,
V

2
, T

)

⇒
[
F

(
V

2
+ δV

)
−F
(
V

2

)]
−
[
F

(
V

2

)
−F
(
V

2
− δV

)]
≥ 0 (1.30)
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1.3. Fluctuations

⇒ δV

[
F ′
(
V

2
+
δV

2

)
−F ′

(
V

2
− δV

2

)]
= (δV )2F ′′

(
V

2

)
≥ 0 (1.31)

just by using the definition of derivative. Then we conclude that F must be a convex
function

(
∂2F

∂V 2

)
N,T

=

(
∂P

∂V

)
N,T

=
1

V κT
≥ 0 (1.32)

It is easy to show that the same applies to ∂2F/∂N2 but not to ∂2F/∂T 2.

1.3. Fluctuations

In statistical mechanics a microstate is described by a point in the 6N-dimensional
phase space Γ. In the microcanonical ensemble the fundamental quantity which gives
the connection with the thermodynamics is the entropy defined as

S(U, V,N) = kB ln Ω(U, V,N) (1.33)

where Ω = Ω(U) is the density of states at a fixed energy. An interpretation of the second
law of thermodynamics is that to a maximum of the entropy corresponds a maximum
of Ω. In the canonical ensemble for a generic configuration of the system x, the Laplace
transform of the density of states is the partition function

Z =

ˆ
e−βH(x)dx (1.34)

while the internal and the Helmholtz free energy are respectively

U = 〈H〉 =

ˆ
H(x)ρ(x)dx =

´
H(x)e−βH(x)dx

Z
= −∂ lnZ

∂β
(1.35)

F (V, T,N) = −kBT lnZ (1.36)

Combining these expressions and using (∂T/∂β) = −kBT 2 and −(∂F/∂T ) = S we can
also verify that
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1. Thermostatics

∂(βF )

∂β
= F + β

∂F

∂β

= F + β
∂T

∂β

∂F

∂T

= F + βkBT
2S

= F + TS

= U (1.37)

For the heat capacity one finds

CV =

(
∂U

∂T

)
V,N

=
∂β

∂T

∂U

∂β

∣∣∣∣
V,T

= − 1

kBT 2

(
∂U

∂β

)
V,N

=
1

kBT 2
[〈H2〉 − 〈H〉2] (1.38)

while for the energy fluctuations in the limit of large particles number√
〈H2〉 − 〈H〉2
〈H〉

=

√
kBT 2CV
U

∼ 1√
N
−→ 0 (1.39)

This last result assures the equivalence of the microcanonical and canonical ensemble in
the thermodynamic limit.

In the grandcanonical ensemble the number of particles is not fixed. The gran partition
function and the grandpotential are defined as

Ξ =
∞∑
N=0

eβµNZ(N, V, T ) (1.40)

Φ(V, T,N) = −kBT ln Ξ (1.41)

The averaged number of particles and the fluctuations of density are

〈N〉 = −∂Φ

∂µ
(1.42)

〈N2〉 − 〈N〉2 = −kBT
(
∂2Φ

∂µ2

)
V,T

= kBT

(
∂〈N〉
∂µ

)
V,T

(1.43)

(
∂〈N〉
∂µ

)
V,T

=
N

V

(
∂〈N〉
∂p

)
V,T

=
〈N〉2

V
κT (1.44)
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1.3. Fluctuations

〈N2〉 − 〈N〉2

〈N〉2
= kBT

κT
V

(1.45)

Now we wish to consider a k-components system where the entropy is given by a gener-
alization of (1.4)

dS =
1

T
dU +

p

T
dV −

k∑
i=1

µi
T
dNi (1.46)

Also from definition (1.33) we have for the density of states

Ω(U, V, {Nk}) ∼ eS/kB (1.47)

We consider small deviations from the maximum of Ω at U, V , {Nk}. Let’s introduce a
k + 2 components vector

α =

(
U − U, V − V , {Nk} − {Nk}

)
(1.48)

If we expand Ω near its maximum we can write

Ω = A exp

(
S(U, V , {Nk})

kB
− gij

2kB
αiαj +O(α3)

)
(1.49)

where gij is a symmetric positive defined matrix. Via the normalization condition

ˆ
dα1

ˆ
dα2

ˆ
· · ·
ˆ
dαk+2 Ω = 1 (1.50)

the Gaussian integral is straight forward and gives

A = e
− S

kB

(
det g

(2πkB)k+2

) 1
2

(1.51)

Defining the generalized thermodynamics forces as

Xi ≡
(
∂S(α)

∂αi

)
αi 6=αj

= −gijαj (1.52)
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1. Thermostatics

where S(α) = S(0)− 1
2
gijαiαj and

gij = −
(

∂

∂αj

)
αk 6=αj

(
∂

∂αi

)
αl 6=αi

S(α) (1.53)

we have the following relations for i = 1 . . . k

α1 = U − U X1 =
1

T
(1.54)

α2 = V − V X2 =
p

T
(1.55)

αi+2 = {Ni} − {N i} Xi+2 = −µi
T

(1.56)

The forces Xi are responsible for pushing the system into the equilibrium. Let’s calculate
the fluctuations of the α vector away from equilibrium by introducing the displacement
α0
i . Shifting the integration variables we want to evaluate

〈αn〉 = A
∏
p

ˆ
αn exp

(
S

kB
− gij

2kB
(αi − α0

i )(αj − α0
j )

)
dαp

= A
∏
p

ˆ
(αn + α0

n) exp

(
S

kB
− gij

2kB
αiαj

)
dαp (1.57)

If we now differentiate with respect to α0
l both sides of the equation, using the normal-

ization condition (1.50) we get

δnl =
∂

∂α0
l

A
∏
p

ˆ
αn exp

(
S

kB
− gij

2kB
(αi − α0

i )(αj − α0
j )

)
dαp

= A
∏
p

ˆ
αn

glj(αj − α0
j )

kB
exp

(
S

kB
− gij

2kB
(αi − α0

i )(αj − α0
j )

)
dαp (1.58)

So for α0
j = 0, using (1.52) it follows that

kBδnl = 〈αngljαj〉 = −〈αnXl〉 (1.59)
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1.3. Fluctuations

gmnkBδnl = −gmn〈αnXl〉 = 〈XmXl〉 = kBgml (1.60)

We can summarize the important results as

〈αiαj〉 = kB(g−1)ij (1.61)

〈αiXj〉 = −kBδij (1.62)

〈XiXj〉 = kBgij (1.63)

Now suppose we set ∆N = 0 and we just examine the stability with respect to
inhomogeneities in energy and volume. A general symmetric 2×2 matrix and its inverse
may be written as

g =

(
a b
b c

)
(1.64)

g−1 =
adj(g)

det(g)
=

1

ac− b2

(
c −b
−b a

)
(1.65)

The conjugate variables elements of the matrix gij are

a = −
(
∂

∂U

)
V,N

(
∂

∂U

)
V,N

S(α)

= −
(
∂T−1

∂U

)
V,N

= −
(

∂U

∂T−1

)−1

V,N

= −
(

∂T

∂T−1

)(
∂U

∂T

)−1

V,N

=
1

T 2CV
(1.66)

b = −
(
∂

∂V

)
U,N

(
∂

∂U

)
V,N

S(α)

= −
(
∂T−1

∂V

)
U,N

= −
(
∂T−1

∂T

)(
∂T

∂V

)
U,N

=
1

T 2

(
∂T

∂V

)
U,N

(1.67)
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1. Thermostatics

To calculate the term (∂T/∂V ) we can use the differential expression for the volume

dV =

(
∂V

∂U

)
T,N

dU +

(
∂V

∂T

)
U,N

dT +

(
∂V

∂N

)
U,T

dN (1.68)

⇒
(
∂U

∂T

)
V,N

= − (∂V/∂T )U,N
(∂V/∂U)T,N

(1.69)

⇒
(
∂V

∂T

)
U,N

= −
(
∂U

∂T

)
V,N

(
∂V

∂U

)
T,N

(1.70)

But from equations (1.2), (1.14) and (1.21) we know that(
∂U

∂V

)
T,N

= −p+ T

(
∂S

∂V

)
T,N

= −p+ T

(
∂p

∂T

)
V,N

= −p+ T
αP
κT

(1.71)

and using (1.69), equation(1.70) becomes(
∂V

∂T

)
U,N

=
CV

p− T αP

κT

(1.72)

Substituting in (1.67) gives

b =
p− T αP

κT

CV T 2
(1.73)

For the last conjugate variable we use (1.4) and obtain

c = −
(
∂

∂V

)
U,N

(
∂

∂V

)
U,N

S(α)

= −
(
∂(p/T )

∂V

)
U,N

= −p
(
∂T−1

∂V

)
U,N

− 1

T

(
∂p

∂V

)
U,N

(1.74)

In our case N is constant and we can reformulate (1.2) and (1.21) as
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1.3. Fluctuations

dU = CV dT +

(
T
αP
κT
− p
)
dV ⇒ dT =

1

αPV
dV +

κT
αP

dP (1.75)

dV = −V κTdp+ V αPdT (1.76)

from which it follows

dU =
CV κT
αP

dp+

(
T
αP
κT
− p+

CV
αPV

)
dV (1.77)

(
∂p

∂V

)
U,N

= −
(
T
αP
κT
− p+

CV
αPV

)
αP
κTCV

(1.78)

(
∂(p/T )

∂V

)
U,N

=
p

CV T 2

(
T
αP
κT
− p
)
−
(
T
αP
κT
− p+

CV
αPV

)
αP

TκTCV

= − 1

κTV T
−
(
p− αPT

κT

)2
1

CV T 2
(1.79)

If we define now from (1.65) the inverse element of the matrix as

g−1 ≡
(
a′ b′

b′ c′

)
(1.80)

we have

a′ =

(
p− αPT

κT

)2

κTV T + CV T
2 (1.81)

b′ = κTV T

(
T
αP
κT
− p
)

(1.82)

c′ = κTV T (1.83)

The first term in the a′ component comes in because of the coupling of the volume fluctu-
ations that we have in real thermodynamics systems while the second term, proportional
to the square of the temperature, is what we usually have in standard thermodynamics.
We see that the fluctuations are coupled

〈
(U − U)2

〉
= kB

[(
p− αPT

κT

)2

κTV T + CV T
2

]
(1.84)

〈
(V − V )2

〉
= kBκTV T (1.85)

〈
(U − U)(V − V )

〉
= kBκTV T

(
T
αP
κT
− p
)

(1.86)
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1. Thermostatics

1.4. Systematic expansion

We can expand the entropy near its maximum S = S(αi = αi), where the first derivative
vanishes, as

S = S − 1

2
αiαjgij −

1

6
αiαjαkgijk + . . . (1.87)

where

gij ∼
1

N
, gijk = − ∂3S

∂U∂V ∂N
∼ 1

N2
(1.88)

which follows from the results just found in the previous section for the matrix elements
a, b and c. Here S can be considered as an action that gather fluctuations away from S.
Since S is extensive also S ∼ N and αiαjgij ∼ N . After an action rescaling the entropy
(1.87) can be written as

S = N

(
S̃ − 1

2
α̃iα̃j g̃ij −

1

6
α̃iα̃jα̃kg̃ijk + . . .

)
(1.89)

where

α̃i =
αi
N

(1.90)

g̃ij = Ngij (1.91)

g̃ijk = N2gijk (1.92)

For the fluctuations of the rescaled variables α̃ we have

〈
α̃2
〉

=

´
α̃2 exp

{
N

(
S̃ − 1

2
α̃2g̃2 − 1

6
α̃3g̃3 + . . .

)}
dα̃´

exp

{
N

(
S̃ − 1

2
α̃2g̃2 − 1

6
α̃3g̃3 + . . .

)}
dα̃

(1.93)

Rescaling back the expectation value with
√
Nα̃ = α′ we get

〈
α̃2
〉

=

´
α′2

N
exp

{
− 1

2
α′2g̃2 − 1

6
α′3√
N
g̃3 + . . .

}
dα′´

exp

{
− 1

2
α′2g̃2 − 1

6
α′3√
N
g̃3 + . . .

}
dα′

=
1

N

〈
α′2
〉

(1.94)
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1.4. Systematic expansion

and

〈
α′2
〉

=

´
α′2 exp

{
− 1

2
α′2g̃2 − 1

6
α′3√
N
g̃3 + . . .

}
dα′´

exp

{
− 1

2
α′2g̃2 − 1

6
α′3√
N
g̃3 + . . .

}
dα′

= g̃−1
2 +O(

1

N
) (1.95)

so that

〈
α′2
〉

= N
〈
α̃2
〉

=
1

N

〈
α2
〉

= g̃−1
2 (1.96)

From (1.88) and (1.91) we can finally states that the fluctuations are extensive

〈
α2
〉

= N g̃−1
2 (1.97)

In analogy with this derivation if we look at energy-particles coupling where ∆V = 0,
we find for a general symmetric 2× 2 matrix the conjugate variables

a = −
(
∂

∂U

)(
∂

∂U

)
V,N

S(α) =
1

CV T 2
(1.98)

b = −
(

∂

∂N

)
V,U

(
∂

∂U

)
V,N

S(α) = −
(
∂T−1

∂N

)
V,U

=
1

T 2

(
∂T

∂N

)
V,U

(1.99)

To calculate (∂T/∂N) we use that the internal energy is an extensive quantity

U(V, T,N) = N u(T, V/N) = N u(T, v) (1.100)

⇒
(
∂U

∂N

)
V,T

= u+N

(
∂u

∂v

)(
∂v

∂N

)
T

= u− V

N

(
∂u

∂v

)
T

= u− v
(
∂u

∂v

)
T

(1.101)

The differential form of the internal energy U(V, T,N) becomes
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1. Thermostatics

dU =

(
∂U

∂V

)
T,N

dV +

(
∂U

∂T

)
V,N

dT +

(
∂U

∂N

)
T,V

dN

=

(
∂u

∂v

)
T

dV +N

(
∂u

∂T

)
V

dT +

[
u− v

(
∂u

∂v

)]
T

dN

=

(
T
αP
κT
− p
)
dV + CV dT +

1

N

(
U + pV − αPTV

κT

)
dN (1.102)

where in the last derivation we have used (1.71). From this it follows(
∂T

∂N

)
V,U

=
1

NCV

(
αPTV

κT
− U − pV

)
(1.103)

⇒ b =
1

NT 2CV

(
αPTV

κT
− U − pV

)
(1.104)

For the last conjugate variable we have to evaluate

c = −
(

∂

∂N

)
V,U

(
∂

∂N

)
V,U

S(α) =

(
∂

∂N

)
V,U

µ

T
(1.105)

Using the Gibbs-Duhem relation (1.9) and equation (1.21) we can write

Ndµ = V dp− SdT = V

(
− dV

V κT
+
αP
κT
dT +

dN

NκT

)
− SdT (1.106)

and inserting (1.102) in the previous equation and using (1.103) one gets after few
manipulations

c =

(
U + pV − αPTV

κT

)2

CVN2T 2
+

V

N2κTT
(1.107)

Finally we can express the fluctuations in particles number and temperature. With the
same methods used in the previous section using (1.61), (1.63), (1.62) and (1.65), after
some derivations gives

〈
(N −N)2

〉
=
kBκTTN

2

V
(1.108)

〈(
1

T
− 1

T

)2
〉

=
kB

CV T 2
(1.109)

〈∆N∆T 〉 = 0 (1.110)
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Chapter 2
Balance Equations

A systematic macroscopic scheme for the description of non-equilibrium processes makes
it necessary to formulate the laws of thermodynamics for systems of which the properties
are continuous functions of space and time, i.e. a field, to obtain a local formulation of
the law of conservation of energy. Also local momentum and mass densities may change
in time so that we need local formulations of the laws of conservation of momentum and
mass.

2.1. Mass conservation

We look at a k-component system described by the continuous density ρi(r, t) with
i = 1 . . . k denoting the component. The density ρi(r, t) results from a suitable local
averaging over the microscopic density operator in a classical fashion and

ρi(r, t) =
N∑
j=1

miδ(r − ri,j) (2.1)

tells us where the mass is located. The rate of change of the mass of component i within
a given volume V is

d

dt

ˆ
V

ρi(r, t)dV =

ˆ
V

∂

∂t
ρi(r, t)dV (2.2)

where ρi(r, t) is the density of the i component. This quantity is equal to the material
flow of component i into the volume V through its surface S, plus the total production
of i in chemical reactions which occur inside V

d

dt
m =

ˆ
V

∂ρi

∂t
dV = −

ˆ
S

ρivijdSj +
r∑
l=1

ˆ
V

νilkldV (2.3)
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2. Balance Equations

where the integral over the surface S is the flux of component i over the same surface and
vij(r, t) its velocity, while νilkl is the production of i per unit volume in the l chemical
reaction for a total of r reactions. The quantity νil divided by the molecular mass of
component i is proportional to the stoichiometric coefficient of i in the l reaction. The
quantity kl(r, t) is the chemical reaction rate of the l reaction with dimensions kg/m3s.
As an example for the auto disintegration of water we have the two reactions

2H2O 
 H3O
+ +OH− (l = 1) (2.4)

H2O +H3O
+ 
 H5O

+
2 (l = 2) (2.5)

Then we have for the stoichiometric coefficient

ν11 = −2mH2O, ν21 = +mH3O+, ν31 = +mOH− (2.6)

ν12 = −mH2O, ν22 = +mH3O+, ν42 = +mH5O2+ (2.7)

where the sign is chosen to be + if the element is produced or − if it is destroyed. Since
mass is conserved in each chemical reaction we have

k∑
i=1

νil = 0 (2.8)

and since the volume V is arbitrary, using Gauss law for the integral over S in equation
(2.3) gives

∂

∂t
ρi = −∇jρ

ivij +
r∑
l=1

νilkl (2.9)

After summing over all the k components and using (2.8) we obtain the law of conser-
vation of mass

∂ρ

∂t
= −∇jρvj (2.10)

with the barycentric velocity weighted over all components defined as

vj =

∑
i ρ

ivij
ρ

(2.11)
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2.2. Linear momentum conservation

The conservation of mass (2.10) expresses the fact that the total mass is conserved, i.e.
that the total mass in any volume element of the system can only change if matter flows
into (or out of) the volume element. We introduce the barycentric substantial time
derivative

d

dt
≡ ∂

∂t
+ vj∇j (2.12)

and the j component of the diffusion flow current of substance i with respect to the
barycentric motion

J ij = ρi(vij − vj) (2.13)

From this definition it follows that for a one component system J ij = 0 and from equation
(2.11) it is also

∑
i

J ij = 0 (2.14)

With the barycentric derivative (2.12) and diffusion flow (2.13) we can write using equa-
tion (2.9)

dρi

dt
=

∂

∂t
ρi + vj∇jρ

i

= −∇jρ
ivij +

r∑
l=1

νilkl + vj∇jρ
i

= −∇jρ
ivij +

r∑
l=1

νilkl + vj∇jρ
i +∇jρ

i(vij − vj)−∇jJ
i
j

=
r∑
l=1

νilkl − ρi∇jvj −∇jJ
i
j (2.15)

If we now sum over all the k components, using (2.8) and (2.14), we obtain a reformu-
lation of the conservation of mass (2.10) with the barycentric time derivative

dρ

dt
= −ρ∇jvj (2.16)

2.2. Linear momentum conservation

We define the stress vector T which acts on the surface S of the volume V with normal
surface component T⊥ = (pn̂)n̂ and tangential component T‖ = p− (pn̂)n̂, where n̂ is
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2. Balance Equations

a unit vector normal to the surface S. Then the equation of motion of the system, with
Fi force per unit mass, can be written as

ˆ
V

ρ
dvi
dt
dV =

ˆ
V

∑
l

ρlF l
i dV +

ˆ
S

TidS (2.17)

In terms of the stress tensor σij we have Ti = σijnj so that using Gauss law we obtain

ˆ
S

TidS =

ˆ
S

σijnjdS =

ˆ
S

σijdSj =

ˆ
V

∇jσijdV (2.18)

Substituting this expression into the equation of motion (2.17), since the volume V of
integration is arbitrary, we obtain a continuum version of Noether theorem

ρ
dvi
dt

=
∑
l

ρlF l
i +∇jσij (2.19)

Now using the definition of the barycentric derivative (2.12) we have

ρ
dvi
dt

= ρ
∂vi
∂t

+ ρvj∇jvi

=
∂ρvi
∂t
− vi

∂ρ

∂t
+∇jρvivj − vi∇jρvj (2.20)

and since the mass is conserved by equation (2.10) the second and the last term of this
last expression cancel out to give

ρ
dvi
dt

=
∂ρvi
∂t

+∇j(ρvivj) (2.21)

Combining this last equation with (2.19) we finally find the balance equation for the
linear momentum

∂ρvi
∂t

+∇j(ρvivj − σij) =
∑
l

ρlF l
i (2.22)

where on the left hand side the first term is the momentum density and the second a
momentum flow with a convective plus a stress part, while the quantity on the right
hand side expresses the source of momentum given by the force per mass Fi.
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2.3. Angular momentum conservation

2.3. Angular momentum conservation

The angular momentum L is defined as

L = r ×mv (2.23)

or in components with the Levi-Civita tensor

Li = εijkrjmvk (2.24)

Multiplying equation (2.22) for (εlkirk) gives

εlkirk
∂ρvi
∂t

+ εlkirk∇j(ρvivj − σij) = εlkirk
∑
m

ρmFm
i ≡Ml (2.25)

where we defined Ml the mass weighted torque density. Rewriting the first term of this
equation as

εlkirk
∂ρvi
∂t

=
∂

∂t
(εlkirkρvi)− ρvi

∂

∂t
εlkirk (2.26)

and since the time derivative of the Levi-Civita tensor vanish so that

ρvi
∂

∂t
εlkirk = ρviεlkivk = ρ(v × v)l ≡ 0 (2.27)

equation (2.25), using ∇jrk = δkj, becomes

∂

∂t
(εlkirkρvi) +∇jεlkirk(ρvivj − σij) = Ml + εlki(ρvivj − σij)δkj

= Ml + εlki(ρvivk − σik)
= Ml − εlkiσik (2.28)

where in the last passage we have used again (2.27). The final result is the balance
equation for angular momentum

∂

∂t
(εlkirkρvi) +∇jεlkirk(ρvivj − σij) = Ml − εlkiσik (2.29)

Here the first term is the angular momentum density, the second the respective flux and
on the right hand side we have the torque. When the force momentum vanishes M = 0
and the angular momentum is conserved, then from this last result one gets εlkiσik = 0.
This implies that the stress tensor is symmetric σik = σki. There are some exceptions
to this last argument, for example systems where the angular momentum is also stored
internally (spin angular momentum).
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2. Balance Equations

2.4. Energy balance equation

We start by multiplying the velocity for the linear momentum balance equation (2.22)

vi
∂ρvi
∂t

+ vi∇j(ρvivj − σij) =
∑
l

viρ
lF l
i (2.30)

Now summing up this two identities

∂

∂t
ρ
v2
i

2
= vi

∂ρvi
∂t
− v2

i

2

∂ρ

∂t
(2.31)

∇jvjρ
v2
i

2
= vi∇jρvivj −

v2
i

2
∇jρvj (2.32)

simply obtained by applying the rule for derivative of a product, and using the conser-
vation of mass (2.10), we get from (2.30) the kinetic energy balance equation

∂

∂t
ρ
v2
i

2
+∇j

(
v2
i

2
vjρ− viσij

)
=
∑
l

viρ
lF l
i − σij∇jvi (2.33)

In analogy with the previous balance equations the first term is the density of kinetic
energy while the second is the correspondent flux density (Poynting vector).

Now we want to consider the case of a force per mass related to a potential ψ as

F l
i (r, t) = −∇iψ

l(r, t) (2.34)

We can then write the first term on the right hand side of (2.33) as

∑
l

viρ
lF l
i = −

∑
l

viρ
l∇iψ

l = −
∑
l

∇iviρ
lψl +

∑
l

ψl∇iviρ
l (2.35)

By defining the potential energy density ρψ ≡
∑

l ρ
lψl and using (2.13) and (2.9) we get

∑
l

viρ
lF l
i = −∇iviρψ +

∑
l

ψl∇i(ρ
lvli − J li)

= −∇iviρψ +
∑
l

ψl(− ∂

∂t
ρl +

r∑
m

νlmkm)−
∑
l

ψl∇iJ
l
i

= −∇iviρψ −
∂

∂t
ψρ+

∑
l

ρl
∂ψl

∂t
−
∑
l

ψl∇iJ
l
i (2.36)
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2.4. Energy balance equation

having assumed the potential energy to be conserved in the chemical reaction so that∑
l ψ

lνlm = 0. If we now insert

−
∑
l

ψl∇iJ
l
i = −∇i

∑
l

ψlJ li +
∑
l

J li∇iψ
l = −∇i

∑
l

ψlJ li −
∑
l

J liF
l
i (2.37)

in (2.36) and then this back into (2.33) we finally get the balance equation for the kinetic
plus local potential energy

∂

∂t

(
ρ
v2
i

2
+ ρψ

)
+∇j

[
vj

(
ρ
v2
i

2
+ ρψ

)
+
∑
l

ψlJ lj − viσij
]

= −
∑
l

J liF
l
i +

∑
l

ρl
∂ψl

∂t
− σij∇jvi (2.38)

The first term is the kinetic plus potential energy density, while for the term between
square brackets there is the convective and the non convective flux respectively. From
this equation we see that the total (kinetic plus potential) energy is not conserved since
there are terms different from zero on the right hand side. We need also to include the
internal energy to get the balance equation for the total energy density, resulting in the
concept of heat. To see this we define the internal energy density u(r, t) via the total
energy density

e(r, t) =
v2
i

2
+ ψ + u (2.39)

is defined as conserved so that

d

dt

ˆ
V

ρe dV =

ˆ
V

∂ρe

∂t
dV = −

ˆ
S

JedS (2.40)

which gives using Gauss law

∂ρe

∂t
= −∇jJ

e
j (2.41)

The internal energy u(r, t) is microscopically due to the thermal motion of particles
which doesn’t contribute to the macroscopic velocity v(r, t). For the j component of
the total energy flux we add to the term between square brackets in (2.38) the internal
energy and the heat flux Jq to have

Jej = vj

(
ρ
v2
i

2
+ ρψ + ρu

)
+
∑
l

ψlJ lj − viσij + Jqj

= vjρe+
∑
l

ψlJ lj − viσij + Jqj (2.42)
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2. Balance Equations

Now (2.38) can be written with no source on the right hand side in terms of the total
energy density

∂

∂t

(
ρ
v2
i

2
+ ρψ + ρu

)
+∇j

[
vj

(
ρ
v2
i

2
+ ρψ + ρu

)
+
∑
l

ψlJ lj − viσij + Jqj

]
= 0 (2.43)

And subtracting from this (2.38) we find the balance equation for the internal energy

∂

∂t
(ρu) +∇j(vjρu+ Jqj ) =

∑
l

J liF
l
i −

∑
l

ρl
∂ψl

∂t
+ σij∇jvi (2.44)

From this equation we see that the internal energy density is not conserved even when
the local potential energy is constant.

In the case of a liquid we can always split the stress tensor into two parts

σij = −pδij +Rij (2.45)

where p is the hydrostatic pressure which is merely the pressure in a fluid at rest and
Rij is called the deviatoric stress that express a distortion from the mean normal stress
tensor. Now looking at the left hand side of (2.44) and using the conservation of mass
(2.10) and the barycentric derivative (2.12) we can write

∂

∂t
(ρu) +∇j(vjρu+ Jqj ) = ρ

∂u

∂t
+ u

∂ρ

∂t
+ vjρ∇ju+ u∇jvjρ+∇jJ

q
j

= ρ
du

dt
+∇jJ

q
j (2.46)

and substituting in the right hand side of (2.44) the expression for the stress tensor
(2.45) we obtain

ρ
du

dt
+∇jJ

q
j =

∑
l

J liF
l
i −

∑
l

ρl
∂ψl

∂t
− p∇ivi +Rij∇jvi (2.47)

Now defining the heat added per unit of mass dq as

ρ
dq

dt
+∇jJ

q
j = 0 (2.48)

and substituting in (2.47) we have

ρ
du

dt
= ρ

dq

dt
+
∑
l

J liF
l
i −

∑
l

ρl
∂ψl

∂t
− p∇ivi +Rij∇jvi (2.49)
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2.5. Entropy balance equation

du

dt
=
dq

dt
+

1

ρ

∑
l

J liF
l
i −

1

ρ

∑
l

ρl
∂ψl

∂t
− p

ρ
∇ivi +

Rij

ρ
∇jvi (2.50)

Now plugging this identity

d

dt

1

ρ
= − 1

ρ2

dρ

dt
⇒ dρ

dt
= −ρ2 d

dt

1

ρ
(2.51)

in (2.16) gives

ρ
d

dt

1

ρ
= ∇jvj (2.52)

and substituting this in (2.50) we finally find the first law of thermodynamics in the
form

du

dt
=
dq

dt
+

1

ρ

∑
l

J liF
l
i −

1

ρ

∑
l

ρl
∂ψl

∂t
− p d

dt

1

ρ
+
Rij

ρ
∇jvi (2.53)

Comparing with (1.22) we note that within this derivation the infinitesimal amounts of
heat supplied to the system dq/dt becomes a true differential.

2.5. Entropy balance equation

For any macroscopic system we can introduce the state variable entropy with the fol-
lowing properties. Its change dS can be written as the sum of two terms

dS = deS + diS (2.54)

where the subscripts stand for external change (entropy supplied to the system from
the surrounding) and internal change (entropy produced inside the system). From the
second law of thermodynamics for reversible (equilibrium) transformations diS = 0 and
for irreversible transformations diS ≥ 0. On the other hand for an adiabatic insulated
system with no exchange of heat and matter with the surrounding deS = 0, so that
from (2.54) it follows dS ≥ 0. For a closed system which can exchange heat with its
surrounding the Carnot-Clausius theorem tells us

deS =
δQ

T
(2.55)
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2. Balance Equations

where δQ is the supplied heat to the system by its surrounding at temperature T .
Then for a closed system at the equilibrium from (2.54) it follows the second law of
thermodynamics

dS ≥ δQ

T
(2.56)

For an open system which can exchange heat and matter with the surrounding (non-
equilibrium processes) the Carnot-Clausius theorem (2.55) doesn’t apply and (2.56) in
general is not true, while the general expression (2.54) remains valid. We define the
entropy per unit mass s, the entropy flux outside the boundary J s, and the entropy
production per unit volume and unit time σ as

S =

ˆ
V

ρs dV (2.57)

deS

dt
= −
ˆ

Ω

(J s + ρsv) dΩ (2.58)

diS

dt
=

ˆ
V

σ dV (2.59)

Here ρsv is the convective term which represents the entropy relative to the material
moving outside the boundary Ω. We note that since (2.59) must hold for an arbitrary
volume and diS ≥ 0 it must be also

σ ≥ 0 (2.60)

We’ll keep the notation for the entropy production always with no indices to distinguish
it from the stress tensor.

Using Gauss law and (2.54) to combine the last three equations we have

ˆ
V

(
∂

∂t
ρs+∇i(J

s
i + ρsvi)− σ

)
dV = 0 (2.61)

which implies

∂

∂t
ρs+∇i(J

s
i + ρsvi) = σ (2.62)

Now using the conservation of mass (2.10) and the barycentric derivative (2.12)
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2.5. Entropy balance equation

∂

∂t
ρs+∇iρsvi = ρ

∂s

∂t
+ s

∂ρ

∂t
+ s∇iρvi + ρvi∇is

= ρ
∂s

∂t
+ ρvi∇is

= ρ

(
∂

∂t
+ vi∇i

)
s

= ρ
ds

dt
(2.63)

and we rewrite (2.62) as

ρ
ds

dt
= −∇iJ

s
i + σ (2.64)

To relate the balance equations found in the previous sections to the rate of change of
entropy it’s useful to define the specific quantities

Specific Quantities
These specific quantities as defined here do not depend on space any more, e.g. S
does not depend on space, because it is the total entropy and it’s the same for M .
In principle one could talk about small volume elements large enough that thermo-
dynamics makes sense but small enough to be regarded as points and space and re-
define the specific quantities using these small volume elements. Reference: Risken

s =
S

M
, u =

U

M
, v =

V

M
=

1

ρ
, cl =

M l

M
=
ρl

ρ
(2.65)

where M is the total mass of the system and M l is the total mass of component l. To
avoid confusion with the specific volume v for the velocity vi we will always keep the
tensor index unless otherwise specified.

The Gibbs relation of thermodynamics in equilibrium expresses the total differential
of S as

TdS = dU + pdV −
∑
l

µldM l (2.66)

which can be divided by M =
∑

lM
l to give, using (2.65)

Tds = du+ pdv −
∑
l

µldcl (2.67)

where p is the equilibrium pressure and µl the chemical potential of component l. If we
assume that even if our system is not in equilibrium within small mass elements a state
of local equilibrium exists, along the trajectory we have
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2. Balance Equations

T
ds

dt
=
du

dt
+ p

dv

dt
−
∑
l

µl
dcl

dt
(2.68)

where d/dt is the barycentric derivative (2.12). The hypothesis of local equilibrium made
here are justified by the validity of the following conclusions. Multiplying for ρ equation
(2.53) and using the definition of specific volume (2.65) and heat added per mass (2.48)
we have

ρ
du

dt
= ρ

dq

dt
+
∑
l

J liF
l
i −

∑
l

ρl
∂ψl

∂t
− ρpdv

dt
+Rij∇jvi

= −∇jJ
q
j +

∑
l

J liF
l
i − ρp

dv

dt
+Rij∇jvi (2.69)

where in the last line we have also assumed the case ψ̇ = of a constant potential. Now
using (2.15), (2.16) and (2.65) we can write

ρ
dcl

dt
= ρ

d

dt

ρl

ρ

= −ρ
l

ρ

dρ

dt
+
dρl

dt

= ρl∇jvj − ρl∇jvj −∇jJ
l
j +

r∑
j

νljkj

= −∇jJ
l
j +

r∑
j

νljkj (2.70)

Multiplying (2.68) for ρ/T and using (2.69) and (2.70) we find

ρ
ds

dt
= − 1

T
∇jJ

q
j +

1

T

∑
l

J liF
l
i −

1

T
ρp
dv

dt
+

1

T
Rij∇jvi +

ρ

T
p
dv

dt
− ρ

T

∑
l

µl
dcl

dt

= − 1

T
∇jJ

q
j +

1

T

∑
l

J liF
l
i +

1

T
Rij∇jvi +

1

T

∑
l

µl∇jJ
l
j −

1

T

∑
l

µl
∑
j

νljkj (2.71)

Introducing the so-called chemical affinities of the reactions j = 1 . . . r, proportional to
their strength, as

Aj =
∑
l

µlνlj (2.72)
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2.5. Entropy balance equation

we can rewrite equation (2.71) in the form

ρ
ds

dt
= − 1

T
∇jJ

q
j +

1

T

∑
l

J liF
l
i +

1

T
Rij∇jvi +

1

T

∑
l

µl∇jJ
l
j −

1

T

∑
j

Ajkj

= −∇j

(
Jqj
T
−
∑
l

µl

T
J lj

)
− Jqj

∇jT

T 2
−
∑
l

J lj

(
∇j

µl

T
− F l

i

T

)
+

1

T
Rij∇jvi −

1

T

∑
j

Ajkj

(2.73)

From comparison with (2.64) it follows that the entropy flux outside the boundary is

Jsj =
Jqj
T
−
∑
l

µl

T
J lj (2.74)

and the entropy production

σ = −Jqj
∇jT

T 2
−
∑
l

J lj

(
∇j

µl

T
− F l

i

T

)
+

1

T
Rij∇jvi −

1

T

∑
j

Ajkj (2.75)

From (2.74) we see that the entropy flux J s consists of two parts, the reduced heat flow
J q/T and the diffusion flow of matter J l. For the entropy production we have four
different contributions:

1. Heat conduction (J q)

2. Diffusion (J l)

3. Viscous fluxes (R)

4. Chemical reactions (kj)
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Chapter 3
Onsager Relations

In thermodynamic equilibrium, i.e. when all thermodynamic forces vanish, the entropy
production is zero. Thus, we also expect the fluxes to vanish. In many cases the fluxes
depend linearly on thermodynamic forces, e.g. the heat flux or the diffusional flux. From
these linear laws, one can derive symmetry relations, called Onsager relations.

3.1. Formulation of Onsager relations

For usual systems without magnetic fields time reversal symmetry holds, i.e. the equa-
tions of motion are symmetric in time and if all velocities are inverted, all trajectories
are followed backward in time. If we consider an adiabatically isolated system, there
are only two type of fields. Those, which are invariant under velocity inversion or ’even’
in the velocities (energy, concentration etc.), denoted by A1, . . . , An, and those which
change their sign under velocity inversion or ’uneven’ (velocity itself, momentum etc.),
denoted by B1, . . . , Bn. The deviations from their equilibrium values A0

i , B
0
i are defined

by

αi = Ai − A0
i ; i = 1, . . . , n (3.1)

βi = Bi −B0
i ; i = 1, . . . , n (3.2)

At equilibrium, the entropy has a maximum and the state variables αi, βi are zero by
definition. For the deviation ∆S of the entropy from its equilibrium value we can
approximate

∆S = −1
2
gikαiαk − 1

2
hikβiβk , (3.3)

where g, h are positive defined matrices and for vanishing magnetic fields, there is no
αβ cross term, since the entropy is even in the velocities.

We can assume a linear law for the time evolution of α and β

dαi
dt

= −Mαα
ik αk −M

αβ
ik βk (3.4)

dβi
dt

= −Mββ
ik βk −M

βα
ik αk (3.5)
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3. Onsager Relations

and define thermodynamic forces in analogy with (1.52) as

Xi =
∂∆S

∂αi
= −gikαk ⇒ αi = −(g−1)ikXk

Yi =
∂∆S

∂βi
= −hikβk ⇒ βi = −(h−1)ikYk

(3.6)

(3.7)

Inserting (3.6) and (3.7) into (3.4) and (3.5), we obtain

dαi
dt

= Lααik Xk + Lαβik Yk ≡ Ji

dβi
dt

= Lββik Yk + Lβαik Xk ≡ Ii ,

(3.8)

(3.9)

where the L matrices are given by

Lααik = Mαα
il (g−1)lk (3.10)

and we have defined the thermodynamic fluxes Ji and Ii. The Onsager reciprocal rela-
tions state that

Lααik = Lααki

Lββik = Lββki

Lαβik = −Lβαki .

(3.11)

(3.12)

(3.13)

This relations are valid only if no external magnetic field is present since the Lorentz
force is proportional to the vector product of the particles velocity with the field.
We now consider the time derivative of the entropy, i.e. the entropy production, for
which using equations (3.6) to (3.9) gives

d

dt
∆S = −gikαk

dαi
dt
− hikβk

dβi
dt

= XiJi + YiIi

= Lααik XiXk + Lββik YiYk . (3.14)

where in the last line, we have used the third Onsager relation (3.13) in order to eliminate
the XY -coupling term. We see from this last result that the entropy production is
quadratic in the forces.

3.2. Thermohydrodynamics

To make exemplary use of the Onsager relations, we consider a hydrodynamic system.
Without external forces Fi = ψ = 0, the linear momentum balance equation (2.19),
using (2.45), gives
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3.2. Thermohydrodynamics

ρ
dvi
dt

= ∇jσij = −∇ip+∇jRij . (3.15)

Setting Fi = ψ = 0 also in (2.47) gives for the internal energy

ρ
du

dt
= −∇iJ

q
i − p∇ivi +Rij∇jvi (3.16)

For the entropy production (2.75) with no diffusion and chemical reactions we have

σ = −Jqj
∇jT

T 2
+

1

T
Rij∇jvi (3.17)

According to Onsager the phenomenological equation for the heat flux reads

Jqj = −Lqq∇jT

T 2
(3.18)

The differential form of Fourier law also states that

Jqj = −λ∇jT (3.19)

so that

Lqq

T 2
= λ (3.20)

with λ is the heat conductivity. For fluids the off diagonal matrix of the stress tensor
can be written in terms of two different viscosities η and η′ as

Rij = η(∇ivj +∇jvi) + η′δij∇kvk (3.21)

which is clearly symmetric. Since every tensor can be decomposed into a a sum of a
symmetric and antisymmetric part we also have

∇jvi = 1
2
(∇jvi +∇ivj) + 1

2
(∇jvi −∇ivj) (3.22)

and its contraction with the symmetric tensor (3.21) gives

Rij∇jvi = η
2
(∇ivj +∇jvi)(∇ivj +∇jvi) + η′(∇kvk)

2 ≥ 0 (3.23)

Since there is no cross term between∇jT and∇ivj because they have different symmetry
(Curie Principle), substituting in (3.17) equations (3.19) and (3.23) gives

σ =
λ

T 2
(∇T )2 +

η

2T
(∇ivj +∇jvi)

2 +
η′

T
(∇kvk)

2 ≥ 0 (3.24)
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3. Onsager Relations

Inserting (3.21) into (3.15), (3.19) and (3.23) into (3.16), we can rewrite (3.15) and (3.16)
together with the conservation of mass (2.16) as five equations

ρ
dvi
dt

= −∇ip+ η∆vi + (η + η′)∇j∇ivj

dρ

dt
= −ρ∇jvj

ρ
du

dt
= λ∆T − p∇ivi +

η

2
(∇ivj +∇jvi)

2 + η′(∇kvk)
2

(3.25)

(3.26)

(3.27)

in the seven unknowns v, ρ, T, u and p (given λ, η and η′). Thus we need the equation
of state to generate two more equations

U(V, T,N)⇒ u(ρ, T )

p(V, T,N)⇒ p(ρ, T )

(3.28)

(3.29)

which together with (3.25), (3.26) and (3.27) represent the basic equations of thermo-
hydrodynamics.
Non equilibrium statistical mechanics can be divided into 3 major subjects

1. Thermohydrodynamics

2. Stochastics

3. Boltzmann equation

The subject of Thermohydrodynamics itself can be grouped into 4 major fields

1. Hydrodynamics, where the internal energy u is unimportant

2. Thermostatics, where there is no dynamic transport

3. Heat conduction

4. Diffusion equation

Some important approximations include the isothermal approximation, where p(ρ, T )→
p(ρ), which results into a decoupling of the equations and the vanishing velocity field
v = 0, which from (3.16) leads to Fourier law ρu̇ = λ∆T .

3.3. Microscopic derivation

We consider an adiabatically insulated system, i.e. a microcanonical ensemble. In
equilibrium, the probability density of N particles is given by

ρ = ρ(qN ,pN) =

{
ρ0 E ∈ [E,E + dE]

0 otherwise
(3.30)
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3.3. Microscopic derivation

where ρ0 is determined by the normalization condition

ˆ
dqNdpNρ(qN ,pN) = 1 . (3.31)

Using (3.30), we can explicitly calculate (3.31) as an integral over ρ0 and restrict the
integration volume to states with energies in the given interval [E,E + dE]. This leads
directly to an expression for the inverse of the probability density

1

ρ0

=

ˆ
E,E+dE

dqNdpN = Ω(E) , (3.32)

where Ω(E) denotes the accessible phase space volume of the energy shell defined by the
considered interval. Macroscopically our system is described by a set of extensive vari-
ables Ai, such as mass, energy, electric charge etc.. We can view each Ai as component
of the vector

A = A(qN ,pN) . (3.33)

The probability to find the system in a state A(qN ,pN), that fulfills A(qN ,pN) ∈
[A,A+ dA] is given by

f(A)dA =

ˆ
A,A+dA

dqNdpNρ(qN ,pN) (3.34)

= ρ0

ˆ
E,E+dE
A,A+dA

dqNdpN =
Ω(A, E)

Ω(E)
(3.35)

where in the last line we have used (3.32) and Ω(A, E) is the volume in phase space
containing the points with energy [E,E+dE] and [A,A+dA] and f(A) the distribution
function for the state A. If we assume f(A) to be Gaussian we can write

f(A) = C exp

(
− gij

2kB
(Ai − 〈Ai〉)(Aj − 〈Aj〉)

)
(3.36)

where gij are the elements of a symmetric positive defined matrix. Then the fluctuations
αi = Ai − 〈Ai〉 follow the equilibrium distribution

f(α) = C exp

{
− gij

2kB
αiαj

}
. (3.37)

and

〈Ai〉 =

ˆ
dA f(A)Ai . (3.38)

Then from (3.34) the normalization condition
ˆ
f(α) dα = 1 (3.39)
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3. Onsager Relations

gives

C =

(
det g

(2πkB)n

)1/2

(3.40)

Now we define in analogy with (1.52) the forces

Xi ≡ kB
∂ ln f

∂αi
= −gikαk (3.41)

As for (1.62) we have the following relations

〈αiXj〉 = −〈αigjkαk〉

=

ˆ
αiXjf(α) dα

= kB

ˆ
αi
∂f

∂αj
dα

= −kB
ˆ
f
∂αi
∂αj

dα

= −kBδij (3.42)

Then we obtain an expression equivalent to (1.61) for the correlation function

〈αiαj〉 = kB(g−1)ij (3.43)

We now consider the joint distribution function

f(α,α′, τ) (3.44)

for which
f(α,α′, τ)dαdα′ (3.45)

is by definition the joint (product) probability that the system is initially in a state α
and after a time τ in a state α′. Therefore, we first consider the conditional probability
in phase space

P (qN ,pN |q′Np′N ; τ) = P (α|α′; τ) (3.46)

to find the system in a state q′N ,p′N , when it was in a state qN ,pN a time interval τ
before. The conditional probability obeys the normalization relation

ˆ
dα′P (α|α′; τ) =

ˆ
E,E+dE

dα′P (α|α′; τ) = 1 , (3.47)

which states, that the probability to find a particle in any state of the accessible phase
space volume after some time τ is unity independently of the initial starting point,
and also that all phase spec trajectories remain inside the considered interval. With
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3.3. Microscopic derivation

the conditional probability distribution, we can describe propagation in time of the
probability density as

ρ(α′; τ) =

ˆ
dα ρ(α; 0)P (α|α′; τ) (3.48)

and since we have a micro canonical ensemble with a stationary distribution

ρ(α; τ) = ρ(α; 0) = ρ0 (3.49)

equation (3.48) gives ˆ
dα P (α|α′; τ) = 1 . (3.50)

The equations of motions for a conservative system (no friction) are invariant under time
reversal transformation

τ → −τ, qN → qN , pN → −pN (3.51)

Therefore, the conditional probability obeys the following relation

P (qN ,pN |q′N ,p′N ; τ) = P (qN ,−pN |q′N ,−p′N ;−τ) (3.52)

and as a consequence of causality in the equation of motion it must be also

P (qN ,−pN |q′N ,−p′N ;−τ) = P (q′N ,−p′N |qN ,−pN ; τ) . (3.53)

so that

P (qN ,pN |q′N ,p′N ; τ) = P (q′N ,−p′N |qN ,−pN ; τ) (3.54)

which expresses that if we reverse the momenta at a certain time, the particles will
retrace their former path.
As we are interested in the joint distribution f(α,α′, τ) as a function of the α variables,
we consider the connection between the distribution function f , the conditional prob-
ability P and the probability density ρ. The joint probability for the microcanonical
ensemble for the states α and α′ is given by the integrand in (3.48). Using (3.49) we
express the joint probability as

f(α,α′, τ)dαdα′ =

¨
α,α+dα
α′,α′+dα′

dαdα′ ρ(α)P (α|α′; τ)

= ρo

¨
α,α+dα
α′,α′+dα′

E,E+dE

dαdα′ P (α|α′; τ) (3.55)
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3. Onsager Relations

from which it follows immediately that f(α,α′, τ)dαdα′ is stationary since it is just a
function of the time interval τ and not of some initial time t. By replacing A with α in
equation (3.34), and using (3.47) we find from last equationˆ

f(α,α′, τ)dα′ = f(α) (3.56)
ˆ
f(α,α′, τ)dα = f(α′) (3.57)

and defining the conditional probability density for the microcanonical ensemble as

P (α|α′; τ)dα′ ≡ f(α,α′; τ)dαdα′

f(α)dα
(3.58)

we obtain from (3.32), (3.35) and (3.55)

P (α|α′; τ)dα′ =
1

ρ0 Ω(α, E)
f(α,α′; τ)dαdα′

=
1

Ω(α, E)

¨
α,α+dα
α′,α′+dα′

E,E+dE

dα dα′ P (α|α′; τ) (3.59)

from which we see that also the conditional probability is stationary. We can now state
from the last results some important properties of the conditional probability

1. P (α|α′; τ) ≥ 0

2. P (α|α′; 0) = δ(α−α′)

3.
´

dα′ P (α|α′; τ) = 1

4.
´

dαf(α)P (α|α′; τ) = f(α′)

The fifth relation describes the detailed balance, meaning that in equilibrium each
process is balanced by its reversed process

f(α)P (α|α′; τ) = f(α′)P (α′|α; τ) (3.60)

This is an important observation and will be proven in the following. By using equation
(3.32) (3.35) and (3.59) we obtain

f(α)P (α|α′; τ) = ρ0

ˆ
α

dqNdpN
ˆ
α′
P (qN ,pN |q′N ,p′N ; τ) (3.61)

Using equation (3.54) we find

f(α)P (α|α′; τ) =ρ0

ˆ
α

dqNdpN
ˆ
α′
P (qN ,pN |q′N ,p′N ; τ)

=ρ0

ˆ
α

dqNdpN
ˆ
α′
P (q′N ,−p′N |qN ,−pN ; τ)

=f(α′)P (α′|α; τ)
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3.3. Microscopic derivation

where we have used that the α variables are by definition invariant under the transfor-
mation (qN ,pN)→ (qN ,−pN).
Next we consider the expectation value of the α variables

〈αi(t)〉α0
i
, with 〈αi(0)〉 ≡ α0

i . (3.62)

We assume, that (α0
i )

2 � kB(g−1)ii, i.e. we are looking at deviations from equilibrium
larger then the equilibrium fluctuations given by (3.43). A phenomenological approach to
describe the time evolution of the expectation value is given by (3.4) for the α variables

d 〈αi(t)〉α0
i

dt
= −Mik 〈αk(t)〉α0

k
, (3.63)

where

〈αi(t)〉α0
i

=

ˆ
dαP (α0|α, t)αi (3.64)

If the matrix Mik is independent of time, we obtain the formal solution

〈α(t)〉α0 = e−Mtα0 (3.65)

with

e−Mt ≡
∞∑
n=0

(−M t)n

n!
= 1−M t+ 1

2
MM t2 + . . . (3.66)

d

dt
e−Mt = −Me−Mt (3.67)

Multiply by α0f(α0) and integrate over α0 equation (3.64), using (3.65), givesˆ
dα0α0f(α0) 〈α(t)〉α0 =

¨
dα0dα α0f(α0)P (α0|α, t)α (3.68)

=

ˆ
dα0α0f(α0)e−Mtα0 (3.69)

If we swap α and α0 and assuming that we are in equilibrium where the detailed balance
relation (3.60) is valid, we can write¨

dα0dαf(α0)α0αP (α0|α, t) =

¨
dαdα0f(α0)αα0P (α0|α, t) (3.70)

i.e. we have a symmetric matrix. Thus combining (3.69) and (3.70) yieldsˆ
dα0α0f(α0)e−Mtα0 =

¨
dα0dαf(α0)α0αP (α0|α, t)

=

¨
dαdα0f(α0)αα0P (α0|α, t)

=

ˆ
dα0f(α0)

(
e−Mtα0

)
α0 .

(3.71)
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3. Onsager Relations

We define the matrix
Bij =

(
e−Mt

)
ij

(3.72)

and rewrite the previous equation in components as
ˆ

dα0α0
kf(α0)Bijα

0
j =

ˆ
dα0f(α0)Bkjα

0
jα

0
i . (3.73)

which gives, using (3.43)
g−1
kj Bij = g−1

ji Bkj . (3.74)

Using the useful relation (
eM
)T

= e(MT ) , (3.75)

where T denotes the matrix transposition ATij = Aji, from (3.74) we have

g−1BT = Bg−1 . (3.76)

Using the series representation of the matrix exponential B = eMt, we can compare the
left and right hand side in every order of t and conclude that

g−1MT = Mg−1 . (3.77)

We further use, that g is symmetric and thus also its inverse is symmetric. From (3.10)
we can verify the first Onsager relation (3.11) easily by looking at (3.77)

L = Mg−1 = g−1MT = (g−1)TMT =
(
Mg−1

)T
= LT . (3.78)

The proof for the other Onsager relations can be found in the original works by Onsager
L.Onsager, PhysRev37, 405(1931); 382265(1931).

3.4. Curie principle and coupling effects

Curie Principle.
This is not really clear yet and it could just be left out.

Every tensor Tij can be decomposed according to

Tij =
1

3
δijTll + TAij + T Sij , (3.79)

where we used Einstein notation and thus Tll is nothing but the trace of the tensor and
TA/S are the antisymmetric and symmetric components respectively. The symmetric
part has five components and the antisymmetric part, which is traceless, has three
components.

COMMENT: check on number of components
The general expression for the entropy production is

σ = JSXS + JPi X
P
i + Jai X

a
i + JSijX

S
ij (3.80)
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3.4. Curie principle and coupling effects

where JSXS is a scalar and represents the chemical reactions ∇iVi, J
P
i X

P
i is a polar

vector and represents the heat flux, Jai X
a
i is an axial vector and represents shear stress

and rotation and JSijX
S
ij is a symmetric tensor representing viscosity. One can show that

for an isotropic system it is

JS = LSSXS (3.81)

JPi = LPPXP
i (3.82)

Jai = LaaXa
i (3.83)

JSij = (LSS)TXS
ij (3.84)

These quantities are all scalars and there is coupling between different terms of the same
symmetry!

σ =LSSX2
S ≥ 0 (3.85)

+ LPPXP2
i ≥ 0 (3.86)

+ LaaXa2
i ≥ 0 (3.87)

+ (LSS)TXS2
ij ≥ 0 (3.88)

We now want to consider heat flux or diffusion as an example. Therefore, we consider
a system without chemical reaction at rest v = 0, F l = 0. The entropy production is
then given by

σ(r, t) = −Jqi
∇iT

T 2
−

k∑
l=1

J li∇i
µl

T
(3.89)

As the system in total is at rest, we have
∑k

l=1 J
l
i =

∑k
l=1 ρ

l(vli − vi) = 0, thus we can

add
∑k

l=1 J
l
i∇i

µk

T
= 0 and eq. (3.89) becomes

σ(r, t) = −Jqi
∇iT

T 2
−

k∑
l=1

J li∇i

(
µl

T
− µk

T

)

= −Jqi
∇iT

T 2
−

k−1∑
l=1

J li∇i

(
µl

T
− µk

T

)
(3.90)

By comparing (3.90) with the relations in (3.14) we obtain

Jqi = −Lqq∇iT

T 2
−

k−1∑
l=1

Lql∇i

(
µl

T
− µk

T

)
(3.91)

J li = −Lql∇iT

T 2
−

k−1∑
m=1

Llm∇i

(
µl

T
− µk

T

)
(3.92)

According to Onsager we have Lql = Llq, Llm = Lml.

41



3. Onsager Relations

3.5. Stationarity and stability

Stationary states are characterized by a constant value of the α variables, although it is
not required that α = 0 since we want to consider both equilibrium and non equilibrium
stationarity states. We want to proof that stationary states are characterized by a
minimum in the entropy production. Let’s consider a fluid at equilibrium where equation
(2.19), using (3.21), reads

0 = ρ
dvi
dt

=
∑
l

ρlF l
i +∇jσij

=
∑
l

ρlF l
i −∇ip+ η∆vi + (η + η′)∇j∇ivj (3.93)

which is just equation (3.25) with Fi 6= 0. If we assume the velocity constant in space
the last equation gives the condition of mechanical equilibrium for a k-component fluid

∑
l

ρlF l
i = ∇ip (3.94)

Now consider a one component system with temperature fixed at the surface for bound-
ary condition. The phenomenological equation for the heat flux (3.18) is

Jqj = −Lqq∇jT

T 2
(3.95)

for which the entropy production (3.17) with the velocity constant in space becomes

σ = −Jqj
∇jT

T 2
= Lqq

(
∇jT

T 2

)2

(3.96)

Assuming Lqq = const, the total entropy production Σ in the system (2.59) is then given
by

Σ ≡ diS

dt
=

ˆ
V

σ dV =

ˆ
V

Lqq
(
∇jT

T 2

)2

dV (3.97)

To find the temperature profile T (r) for which Σ[T (r)] is extremal we have to evaluate
the functional derivative

δΣ[T (r)]

δT (r̃)
≡ lim

ε→0

Σ[T (r) + εδ(r − r̃)]− Σ[T (r)]

ε

= lim
ε→0

ˆ
V

Lqq∇j∇j

εT 4

{
[T (r) + εδ(r − r̃)]2 − [T (r)]2

}
dV

=

ˆ
V

Lqq

T 4
∇j∇j

{
2T (r)δ(r − r̃)

}
dV (3.98)
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3.5. Stationarity and stability

and since for boundary condition the temperature is constant at the surface this gives

δΣ[T (r)]

δT (r̃)
= −
ˆ
V

2Lqq

T 4
∇j∇jT (r)δ(r − r̃) dV

= −2Lqq
1

T 4
∇j∇jT (r̃) (3.99)

Imposing Σ[T (r)] = 0 it must be

Lqq
1

T 4
∇j∇jT (r̃) = 0 ⇒ ∇jJ

q
j = 0 (3.100)

In terms of energy balance, equation (2.47) with constant potential reads

ρ
du

dt
= −∇jJ

q
j − p∇jvi +Rij∇jvi (3.101)

which for constant velocity and with the condition for extremal entropy production
∇jJ

q
j = 0 gives

0 =
du

dt
=
∂T

∂t

(
∂u

∂T

)
V

= CV
∂T

∂t
⇒ ∂T

∂t
= 0 (3.102)

Then the total entropy production Σ is extremal for the stationarity of the temperature
and since σ ≥ 0 this must be a minimum with respect to the entropy production. We
show now how stationary states are stable with respect to small perturbations δT (r).
The time derivative of the total entropy production (3.97) is

∂Σ

∂t
=

∂

∂t

ˆ
V

Lqq
(
∇jT

T 2

)2

dV

=
∂

∂t

ˆ
V

Lqq
(
∇j

1

T

)2

dV

= 2

ˆ
V

Lqq
(
∇j

1

T

)(
∇j

∂

∂t

1

T

)
dV

= 2

ˆ
V

Jqj∇j
∂

∂t

1

T
dV

= 2

ˆ
S

Jqj
∂

∂t

1

T
dSj − 2

ˆ
V

∂

∂t

1

T
∇jJ

q
j dV

= −2

ˆ
V

∂

∂t

1

T
∇jJ

q
j dV (3.103)

since the integral over the surface vanishes as the temperature is fixed there. From
(3.101) with constant velocity we have
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3. Onsager Relations

∇jJ
q
j = −ρdu

dt
= −ρCV

∂T

∂t
(3.104)

so that the total entropy production time derivative becomes

∂Σ

∂t
= −2

ˆ
V

∂

∂t

1

T

(
− ρCV

∂T

∂t

)
dV

= −2

ˆ
V

ρCV
T 2

(
∂T

∂t

)2

dV ≤ 0 (3.105)

Then the entropy production in the total volume V can only decrease in time

∂Σ

∂t
≤ 0 (3.106)

A stationary state, for which Σ is minimal, is also a stable state. Non stationary states
with Σ > Σmin evolve into the minimum and small perturbations decay.

44



Chapter 4
Response Functions

4.1. Time correlation function

The time correlation function Cij(τ) has characteristic properties, that can be derived
from the detailed balance relation. It is defined via

Cij(τ) = 〈αi(t+ τ)αj(t)〉 =

¨
dα0dα α0

jf(α0)P (α0|α; τ)αi . (4.1)

Using the detailed balance (3.60)

f(α0)P (α0|α; τ) = f(α)P (α|α0; τ) , (4.2)

we obtain for the correlation function (4.1)

Cij(τ) =

¨
dα0dα α0

jf(α)P (α|α0; τ)αi

= 〈αi(t)αj(t+ τ)〉 = 〈αi(t− τ)αj(t)〉 . (4.3)

Therefore, we obtain the time and index symmetry relation for Cij(τ)

Cij(τ) = Cij(−τ) ,

Cij(τ) = Cji(−τ) = Cji(τ) .

(4.4)

(4.5)

In order to express the correlation function in terms of the matrices g and M defined
in Chapter 3, we consider the correlation function at equal times

Cij(0) = kB(g−1)ij =

¨
dα0dα α0

jf(α0)P (α0|α; 0)︸ ︷︷ ︸
δ(α0−α)

αi

=

ˆ
dα0α0

jα
0
i f(α0) (4.6)
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4. Response Functions

and the time evolution of the expectation value for an even variable αi starting from a
non-equilibrium state α0

d

dt
〈αi(t)〉α0 = −Mik 〈αk(t)〉α0

⇒ 〈αi(t)〉α0 = e−Mt
ikα

0
k =

ˆ
dα αiP (α0|α, t) . (4.7)

Using the two relations (4.6) and (4.7), we find

Cij(τ) = 〈αi(t+ τ)αj(t)〉 =

¨
dα0dα α0

jf(α0)P (α0|α; τ)αi

=

ˆ
dα0 α

0
jf(α0)(e−Mτ )ikα

0
k = (e−Mτ )ikkB(g−1)jk . (4.8)

⇒ Cij(τ) = (e−Mτ )ikkB(g−1)jk (4.9)

4.2. Causality and Kramers-Kronig relation

We consider the response of a system to a set of external forces Fj, that is induced via
the response function Kij(t) according to

〈αi(t)〉 =

ˆ ∞
−∞

dt′Kij(t− t′)Fj(t′) , (4.10)

by applying to changes of variables t′ → t′ + t and t′ → −t′, we obtain

〈αi(t)〉 =

ˆ ∞
−∞

dt′Kij(−t′)Fj(t′ + t) =

ˆ ∞
−∞

dt′Kij(t
′)Fj(t− t′) . (4.11)

The matrix Kij is real and causality imposes the following property

Kij(t− t′) = 0 ; t < t′ or Kij(t) = 0 ; t < 0 . (4.12)

Now we consider the Fourier transform of an expectation value

〈αi(t)〉 =
1

2π

ˆ
dω 〈α̃i(ω)〉 e−iωt (4.13)

=

˚
dt′dωdω′

1

2π
e−iω(t−t′)K̃ij(ω)

1

2π
e−iω

′t′F̃j(ω
′)

=

¨
dωdω′ δ(ω′ − ω)K̃ij(ω)

1

2π
e−iωtF̃j(ω

′)

=
1

2π

ˆ
dω e−iωtK̃ij(ω)F̃j(ω) ,

(4.14)
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4.2. Causality and Kramers-Kronig relation

⇒ 〈α̃i(ω)〉 = K̃ij(ω)F̃j(ω) . (4.15)

The response function in frequency space K̃ij(ω) is given by

K̃ij(ω) =

ˆ ∞
−∞

dt eiωtKij(t) =

ˆ ∞
0

dt eiωtKij(t) , (4.16)

where the second equal sign follows directly from the principle of causality (4.12).
We assume, that K̃ij(0) is finite, which makes sense as for a constant force Fj(t) = F̄j,

the response should be finite

〈αi(t)〉 = F̄j

ˆ ∞
−∞

dt′ Kij(t− t′) = F̄j

ˆ ∞
0

dt′ Kij(t
′) (4.17)

⇒ 〈ᾱi〉 = F̄jK̃ij(0) . (4.18)

Now we introduce the analytic continuation of the Fourier transformed response function
in the upper half of the complex plane K̃ij(z), where z = ω + iε and ε ≥ 0

K̃ij(z) =

ˆ ∞
0

dt K(t)eitz =

ˆ ∞
0

dt K(t)eitωe−εt (4.19)

should converge for K̃ij(ω) convergent (causality), which means, that there are no poles
in the upper complex plane.

It is useful to note, that

K̃ij(ω) = K̃ij(−ω) , (4.20)

where ∗ denotes complex conjugation. This fact directly follows from the property, that
Kij(t) is real:

K̃∗ij(ω) =

ˆ ∞
−∞

dt eiωtKij(t) =

ˆ
dt [cos(ωt) + i sin(ωt)] (4.21)

K̃ij(−ω) =

ˆ
dt [cos(ωt)− i sin(ωt)] = K̃ij(ω)∗ . (4.22)

Causality will also yield a relation between the real and the imaginary part. To this
end, we consider the function

fij(z) =
K̃ij(z)

z − u
, u ∈ R (4.23)

and its contour integral along C ′. As there are no poles within the area enclosed by C ′

it follows that the integral vanishes

˛
C′
fij(z)dz =

˛
C′

K̃ij(z)

z − u
dz = 0 . (4.24)
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4. Response Functions

We can also split the path C ′ into four contributions

˛
C′
fij(z)dz =

ˆ u−r

−R

K̃ij(ω)

ω − u
dω +

ˆ R

u+r

K̃ij(ω)

ω − u
dω (4.25)

+

ˆ 0

π

ireiΦ
K̃ij(u+ reiΦ)

u+ reiΦ − u
dΦ +

ˆ π

0

iReiΦ
K̃ij(Re

iΦ)

ReiΦ − u
dΦ

The last contribution vanishes for a quickly enough decaying function K̃ij. We consider
the Cauchy principal value

P
ˆ ∞
−∞

K̃ij(ω)

ω − u
dω = lim

r→0

[ˆ u−r

−∞

K̃ij(ω)

ω − u
dω +

ˆ ∞
u+r

K̃ij(ω)

ω − u
dω

]
(4.26)

and use equation (4.25) to obtain

P
ˆ ∞
−∞

K̃ij(ω)

ω − u
dω = − lim

r→0

ˆ 0

π

iK̃ij(u+ reiΦ)dΦ = iπK̃ij(ω) , (4.27)

K̃ij(u) =
1

iπ
P
ˆ ∞
−∞

K̃ij(ω)

ω − u
dω . (4.28)

We decompose K̃ into its real and imaginary part

K̃ij(ω) = K̃ ′ij(ω) + iK̃ ′′ij(ω) (4.29)

and apply equation (4.28)

K̃ ′ij(u) + iK̃ ′′ij(u) =
1

iπ
P
ˆ ∞
−∞

K̃ij(ω)

ω − u
dω (4.30)

=
1

iπ
P
ˆ ∞
−∞

K̃ ′ij(ω)

ω − u
dω +

1

π
P
ˆ ∞
−∞

K̃ ′′ij(ω)

ω − u
dω . (4.31)

By comparison of the real and imaginary contributions we obtain the following two
relations, which are called Kramers-Kronig (KK) relation and imply, that the response
function is already completely described by either its real or imaginary component.

K̃ ′ij(u) =
1

π
P
ˆ ∞
−∞

K̃ ′′ij(ω)

ω − u
dω ,

K̃ ′′ij(u) = − 1

π
P
ˆ ∞
−∞

K̃ ′ij(ω)

ω − u
dω .

(4.32)

(4.33)

An alternative way to derive the KK-relation is as follows: From the relation (4.20) it
is clear that

K ′(ω)− iK ′′(ω) = K ′(−ω) + iK ′′(−ω) (4.34)
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4.3. Example – The harmonic oscillator

and thus

K ′(ω) = K ′(−ω) even function

K ′′(ω) = −K ′′(ω) uneven function

(4.35)

(4.36)

K̃ ′ij(u) =
1

π
P
ˆ ∞

0

dω

(
K̃ ′′ij(ω)

ω − u
+
K̃ ′′ij(ω)

−ω − u

)
∼ K ′′(ω)2ω

ω2 − u2
(4.37)

K̃ ′′ij(u) = − 1

π
P
ˆ ∞

0

dω

(
K̃ ′ij(ω)

ω − u
+
K̃ ′ij(ω)

−ω − u

)
∼ K ′(ω)2u

ω2 − u2
(4.38)

4.3. Example – The harmonic oscillator

The equation of motion for a damped and driven harmonic oscillator states

mẍ = −kx− γẋ+ Fext(t) . (4.39)

The solution for the not driven case is

x(t) = Ae−ζω0t sin(
√

1− ζ2ω0t+ φ) , (4.40)

where ω0 =
√

k
m

is the undamped frequency and the damping ratio is given by

ζ =
γ

2
√
mk

=
γ/k

2
√
m/k

=
τγ
2τk

For a sinusoidal force
Fext = F0 cos(ωt) = Re[F0e

iωt] (4.41)

we make the ansatz x(t) = x0e
iωt for a stationary solution. Inserted into the equation

of motion we obtain

−mω2x0e
iωt = −kx0e

iωt − γiωeiωt + F0e
iωt

x0 = F0K(ω) =
F0

k + iγω −mω2

Harmonic Oscillator Response.
I calculated x0 by the definition x(t) =

´
K(t− t′)F (t′)dt′ = x0e

iωt and F (t) = F0e
iωt

which resulted in a different result, i.e. x0 = F0K
∗(ω), this would replace −iγω by

+iγω in the following, which would then also result in two positive Lorentzians for
zero mas limit for K’ and K”

The last equation follows from (4.15).

K(ω) =
k −mω2 − iγω

(k −mω2 + iγω)(k −mω2 − iγω)
=

k −mω2 − iγω
(k −mω2)2 + γ2ω2
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4. Response Functions

The real and imaginary parts of K are

K ′(ω) =
k −mω2

(k −mω2)2 + γ2ω2
, K ′′(ω) =

−γω
(k −mω2)2 + γ2ω2

Assume F0 real, then the real part of the equation is important.

x(t) = Re
[
F0K(ω)eiωt

]
= Re [F0(K ′(ω) + iK ′′(ω))(cos(ωt) + i sin(ωt))]

= F0K
′(ω) cos(ωt)︸ ︷︷ ︸

inphase response

−F0K
′′(ω) sin(ωt)︸ ︷︷ ︸

out-of-phase response

|K(ω)| =
√
K ′2 +K ′′2 =

[
(k −mω2)2 + γω2

]−1/2

SOME NICE PICTURES
The resonance frequency can be defined by

∂|k|
∂(ω2)

= 0 ⇒ ω∗2 = ω2
0(1− 2ζ2) .

In case of a massless particle, the response function reduces to a Lorentz curve

K ′(ω) =
k

k2 + γ2ω2
, K ′′(ω) =

γω

k2 + γ2ω2

Now we consider the work done on the system.
For the pure in-phase motion, i.e. K ′′ = 0, F (t) = F0 cos(ωt), the equation of motion

is just
x(t) = cos(ωt)F0K

′(ω)

and the work done is fully recovered in one cycle

W = F0x0 = F 2
0K

′(ω) .

Power:

P =
W

T
= F 2

0

K ′(ω)ω

2π
K ′ : storage modulus

For the out-of-phase contribution, i.e. K ′′(ω) 6= 0, the external force does perform work
on the system

F (t) = F0 cos(ωt), x(t)F0[K ′ cos(ωt)−K ′′ cos(ωt)

W =

ˆ
cycle

F (x) dx =

ˆ τ

0

F (t)
dx

dt
dt

dx

dt
= F0 [−K ′ω sin(ωt)−K ′′ω cos(ωt)]
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4.4. Fluctuation-Dissipation theorem

W = F 2
0ω

ˆ τ

0

cos(ωt) [−K ′ sin(ωt)−K ′′ cos(ωt)] = F 2
0ωK

′′(ω)
τ

2

Here W refers to the net work in one cycle. The adsorption power is given by

P = W/τ = −F 2
0

ωK ′′(ω)

2
≥ 0; , K ′′ : loss modulus

4.4. Fluctuation-Dissipation theorem

In the following we want to find a relation between C(t) and K(t). To this end, we
consider a step force

Fj(t) =

{
F̄j for t < 0

0 for t > 0
.

The response for t ≥ 0 is

〈αi(t)〉 =

ˆ
dα0 〈αi(t)〉α0 f(α0,F ) , (4.42)

where f(α,F ) is the stationary distribution function in presence of a constant force F
and 〈αi(t)〉α0 is the conditional probability without external force for going from α0 to
αi(t) in time t

〈αi(t)〉α0 =

ˆ
dα αiP (α0|α; t) = (e−Mt)ikα

0
k . (4.43)

Inserting (4.43) into (4.42) yields

〈αi(t)〉 = (e−Mt)ik

ˆ
dα0 f(α0,F )α0

k = (e−Mt)ik 〈αk(0)〉 , (4.44)

We can also express the expectation value of α in terms of the response function K(t)

〈αi(t)〉 =

ˆ t

−∞
dt′ Kij(t− t′)Fj(t′) (4.45)

for t = 0 : 〈αi(0)〉 = F̄j

ˆ 0

−∞
dt′ Kij(−t′)

= F̄j

ˆ ∞
0

Kij(t
′)dt′ = F̄jK̃ij(0) (4.46)

for t > 0 : 〈αi(t)〉 = F̄j

ˆ 0

−∞
dt′ Kij(t− t′) = F̄j

ˆ ∞
t

dt′′ Kij(t
′′) (4.47)

Inserting (4.46) and (4.47) into (4.44), we obtain

〈αi(t)〉 = (e−Mt)ikF̄jK̃kl(0) = F̄j

ˆ ∞
t

dt′′ Kij(t
′′) (4.48)
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4. Response Functions

and conclude

(e−Mt)ik = (K̃−1)jk(0)

ˆ ∞
t

dt′ Kij(t
′) . (4.49)

Remembering equation (4.9), we use (4.49) and arrive at a preform of the fluctuation
dissipation theorem

Cij(t) = 〈αi(t)αj(0)〉 = (e−Mt)ikkB(g−1)jk

Cij(t) = kB(g−1)jk(K̃
−1)jk(0)

ˆ ∞
t

dt′ Kij(t
′) . (4.50)

In order to make the last result completely meaningful, we derive a relation between g
and K̃−1(0) from statistical mechanics. Therefore, we look at the partition function

Z(T ) =

ˆ
Da e−βH(a)+a·Fβ , (4.51)

where D =
´∞
−∞ dα1

´∞
−∞ dα2 . . . denotes the integration over all α variables. The statis-

tical expectation values is given by

〈αi〉 =
1

Z

ˆ
Da αie−βH+α·Fβ =

∂ lnZ

∂βF̄i
≡ K̃ij(0)F̄j , (4.52)

where K̃ij(0) is nothing but the generalized susceptibility. The statistical fluctuation is
given by

∂ 〈αi〉
∂F̄lβ

=
1

Z

ˆ
Da αiαle−βH+α·Fβ − 1

Z

ˆ
Da αie−βH+α·Fβ 1

Z

ˆ
Da αle−βH+α·Fβ

= 〈αiαl〉 − 〈αi〉 〈αl〉 = kB(g−1)il , (4.53)

but also by
∂ 〈αi〉
∂F̄lβ

= K̃il(0)kBT . (4.54)

Combining (4.53) and (4.54) yields

(g−1)il = K̃il(0)T , (4.55)

which is referred to as the static limit of the fluctuation dissipation theorem.
Inserting (4.55) into (4.50), we find the fluctuation-dissipation theorem for t ≥ 0

Cij(t) = kBT

ˆ ∞
t

dt′ Kij(t
′)

dCij(t)

dt
= −kBTKij(t)

(4.56)

(4.57)

To obtain a similar result for the Fourier transforms of C and K, we make some notes
on the correlation function:

52



4.4. Fluctuation-Dissipation theorem

Cij(t) is even in time, thus its Fourier transform C̃ij(ω) is real. Likewise its time

derivative Ċij(t) is uneven in time and its Fourier transform ˙̃Cij(ω) is purely imaginary.

We can further derive a simple relation between C̃ij(ω) and ˙̃Cij(ω) by directly performing
the Fourier transform and taking time derivatives

Cij(t) =

ˆ ∞
−∞

dω

2π
C̃ij(ω)e−iωt

Ċij(t) =

ˆ ∞
−∞

dω

2π
(−iω)C̃ij(ω)e−iωt

⇒ ˙̃Cij(ω) = −iωC̃ij(ω) . (4.58)

Using relation (4.16) and the explicit expression for Ċij(t)

Ċij(t) =

{
−kBTKij(t), for t > 0

kBTKij(−t), for t < 0
, (4.59)

it follows that
˙̃Cij(ω) = −2ikBTK̃

′′
ij(ω)

K̃ ′′ij(ω) =
ω

2kBT
C̃ij(ω) , (4.60)

where we have used (4.58) to get to the last equation.
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Chapter 5
Stochastics

5.1. Brownian motion and Langevin equations

The theory of Brownian motion is the simplest way to approach the dynamics of the of
non-equilibrium systems. The fundamental equation is the Langevin equation in which
we have frictional forces and random forces coexisting. The connection between this
two forces is given by the fluctuation-dissipation theorem. The random motion of a
particle immersed in a fluid is called Brownian motion, but the theory of Brownian
motion has been extended to systems were the particle becomes a collective property of
a macroscopic system. We consider the motion of a spherical particle of mass m, radius
r in a one dimensional fluid with viscosity η. Then the equation of motion is by Newton

m
dv

dt
= Ftot(t) (5.1)

where Ftot(t) is the total instantaneous force on the particle at time t due to the inter-
action with the surrounding medium. If we know the position in time of the particles
of the surrounding medium then this force would be a known function of time so that
it would not be random at all. From the phenomenological point of view this force is a
frictional term so that F = −ζv proportional to the velocity of the particle. If this was
the only contribution then

m
dv

dt
= −ζv (5.2)

with the frictional coefficient given by the Stokes law

ζ = 6πηr (5.3)

The solution of the differential equation (5.2) is given by
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5. Stochastics

v(t) = v(0)e−ζt/m (5.4)

which decays to zero for t −→∞. However since the velocity of the particle at thermal
equilibrium has to be according to the equipartition theorem

〈
v2
〉
eq

=
kBT

m
(5.5)

the actual velocity cannot remain at zero. It follows that an extra term in the total force
must be added. This is a random force δF (t), so that the equation of motion becomes
the Langevin equation for a Brownian particle

m
dv

dt
= −ζv + δF (t) (5.6)

The first is the systematic part or friction and the second is the fluctuating part or
noise. Since the force during an impact with the surrounding cannot vary with extreme
rapidity over the time of any infinitesimal time interval, the first two moments of the
noise averaged over an infinitesimal amount of time are given by

〈δF (t)〉 = 0 〈δF (t)δF (t′)〉 = 2Bδ(t− t′) (5.7)

Here the constant B gives the strength of the fluctuating force with Gaussian distribution
determined by this moments. The Langevin equation (5.6) has the solution

v(t) = v(0)e−ζt/m +

ˆ t

0

dt′e−ζ(t−t
′)/m δF (t′)

m
(5.8)

where the first term is just equation (5.4) giving the exponential decay due to friction
and the second term gives the extra velocity produced by the random noise. If we now
square this equation we get the three terms

v2(0)e−2ζt/m (5.9)

2v(0)

ˆ t

0

dt′e−ζ(t−t
′)/m δF (t′)

m
e−ζt/m (5.10)

ˆ t

0

dt′e−ζ(t−t
′)/m

ˆ t

0

dt′′e−ζ(t−t
′′)/m δF (t′)δF (t′′)

m2
(5.11)
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5.2. Velocity correlation function

so that taking the average and using (5.7) gives the mean squared velocity

〈
v2(t)

〉
= v2(0)e−2ζt/m +

B

ζm
(1− e−2ζt/m) (5.12)

Taking the limit t −→∞ and using (5.5) we find the relation that connects the strength
of the fluctuating force B to the magnitude ζ of the friction

B = ζkBT (5.13)

which is a simplest derivation of the fluctuation-dissipation theorem.

5.2. Velocity correlation function

Equilibrium statistical mechanics is based on the idea of statistical ensemble. In non
equilibrium statistical mechanics since there is no unique partition function this quan-
tities are replaced by time correlation functions which appear whenever we analyze the
statistical behavior of some time-dependent quantity A(t) measured over a long time.
Defining the fluctuation δA(t) = A(t)− 〈A〉, the time averaged product of two fluctua-
tions at different times is then given by the time correlation function of δA as

C(t) = lim
τ→∞

1

τ

ˆ τ

0

ds δA(s)δA(t+ s) (5.14)

We can use the Langevin equation (5.6) and the fluctuation-dissipation theorem (5.13)
to express several time correlation functions. The velocity correlation function can be
obtained from the long time average

〈v(t)v(t′)〉t = lim
τ→∞

1

τ

ˆ τ

0

ds v(t+ s)v(t′ + s) (5.15)

where 〈. . .〉t means that the average is taken over long time. Assuming the initial time
in the infinite past, in equation (5.8) we only need to keep the second term. So shifting
the variable of integration t− t′ → u we have

v(t) =

ˆ t

−∞
dt′e−ζ(t−t

′)/m δF (t′)

m

=

ˆ ∞
0

du e−ζu/m
δF (t− u)

m
(5.16)

Then the velocity correlation function (5.15) is
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〈v(t)v(t′)〉t =

ˆ ∞
0

du

ˆ ∞
0

du′e−ζ(u+u′)/m 1

τ

ˆ τ

0

ds
1

m2
δF (t− u+ s)δF (t′ − u+ s)

=

ˆ ∞
0

du

ˆ ∞
0

du′e−ζ(u+u′)/mds
1

m2
2Bδ(t− u− t′ + u′)

=

ˆ ∞
0

du e−ζ(2u+|t′−t|)/m2B

m2

⇒ 〈v(t)v(t′)〉t =
B

mζ
e−ζ|t

′−t|/m (5.17)

where the product of two random force factor has been replaced by its average. In
the end using the fluctuation-dissipation theorem (5.13) we find the expression for the
velocity correlation function

〈v(t)v(t′)〉t =
kBT

m
e−ζ|t

′−t|/m (5.18)

The same result is obtained calculating the equilibrium ensemble average 〈. . .〉eq instead
of the long time average 〈. . .〉t. For the equilibrium ensemble we average over the noise
equation (5.8) to get

〈v(t)〉noise = v(0)e−ζt/m (5.19)

and multiplying for v(0) and averaging over the initial velocity we find

〈v(t)v(0)〉eq =
kBT

m
e−ζt/m (5.20)

which is the same result obtained in (5.18) since this last equation as the Langevin
equation is valid only for t > 0.

5.3. Mean squared displacement

An easy way to show the connection between the time correlation function for the
velocity and the self diffusion coefficient D which appears in Einstein equation is to start
with the one dimensional diffusion equation for the concentration c(x, t) of a particle.
This is nothing but a continuity equation with the assumption that the current flux of
concentration J(x, t) is proportional to the gradient of the concentration itself by the
factor D so that J(x, t) = −D ∂c/∂x and then

∂

∂t
c(x, t) = − ∂

∂x
J(x, t) = D

∂2

∂x2
c(x, t) (5.21)
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5.3. Mean squared displacement

The mean squared displacement at time t is then found by multiplying this equation by
x2 and integrating over x. We assume, that the distribution is initially localized. The
time derivative of the mean squared displacement is

∂

∂t

〈
x2
〉

=
∂

∂t

ˆ
dx x2c(x, t)

=

ˆ
dx x2 ∂

∂t
c(x, t)

= D

ˆ
dx x2 ∂

2

∂x2
c(x, t)

= −2D

ˆ
dx x

∂

∂x
c(x, t)

= 2D

ˆ
dx c(x, t)

= 2D (5.22)

since the concentration is normalized to unity
´
dx c(x, t) = 1. Integrating over time

(5.22) gives Einstein equation for diffusion in one dimension

〈
[x(t)− x(0)]2

〉
= 2Dt (5.23)

But since the net displacement of the particle’s position during the interval t is given by

x(t)− x(0) =

ˆ t

0

dt′v(t′) (5.24)

taking the average of (5.8) and using (5.7) we find two terms contributing to 〈[x(t)− x(0)]2〉
which are

ˆ t

0

dt′
ˆ t

0

dt′′
〈
v2(0)e−ζ(t

′+t′′)/m
〉

(5.25)

ˆ t

0

dt′
ˆ t

0

dt′′
ˆ t

0

dτ ′
ˆ t

0

dτ ′′e−ζ(t
′−τ ′)/me−ζ(t

′′−τ ′′)/m2Bδ(τ ′ − τ ′′)
m2

(5.26)

Then using (5.18) and the same integrals done in the previous section the average of the
mean square displacement becomes

〈
[x(t)− x(0)]2

〉
= 2

kBT

ζ

[
t− m

ζ
+
m

ζ
e−ζt/m

]
(5.27)
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So for long times the effect of the noise is dominant and the mean squared displacement
increases linearly with time

〈
[x(t)− x(0)]2

〉
∼ 2

kBT

ζ
t , for t� m/ζ (5.28)

while for short times the exponential in (5.27) can be expanded to give

〈
[x(t)− x(0)]2

〉
∼ kBT

m
t2 , for t� m/ζ (5.29)

Using Stokes law (5.3) and Einstein equation (5.23), from (5.28) we find the Einstein-
Stokes formula for the ballistic motion

D =
kBT

ζ
=
kBT

6πηr
(5.30)

Equating the mean squared displacement for long and short times (5.28) and (5.29), we
identify the critical time after which the ballistic regime take place scaling as

t∗ =
2m

ζ
∼ m

ζ
(5.31)

Using (5.24) we can write the mean squared displacement as

〈
[x(t)− x(0)]2

〉
=

ˆ t

0

dτ

ˆ t

0

dτ ′ 〈v(τ)v(τ ′)〉 (5.32)

and using the time-translational invariance, the time derivative of this quantity is then

d

dt

〈
[x(t)− x(0)]2

〉
= 2

ˆ t

0

dτ 〈v(t)v(τ)〉

= 2

ˆ t

0

dτ 〈v(t− τ)v(0)〉

= 2

ˆ t

0

dτ 〈v(τ)v(0)〉 (5.33)

where in the last passage we have just changed the integration variable switching the
sign. We see that now then time t appears only in the integral domain. From comparison
with equation (5.23), we obtain, that the diffusion coefficient is given by
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5.3. Mean squared displacement

D =

ˆ t

0

dτ 〈v(τ)v(0)〉 (5.34)

The general form of the fluctuation-dissipation theorem (4.57) tells us that the correla-
tion function C(t) is linked to the response function K(t) as

dC(t)

dt
= −kBTK(t) (5.35)

We wish to find the connection between the diffusion and the fluctuation-dissipation
theorem. If for a state variable α we have the position x(t) in one dimension then for
the force F (t) we have

x(t) =

ˆ
dt′K(t− t′)F (t′)

=

ˆ
dt′K(t′)F (t− t′) (5.36)

v(t) =
dx(t)

dt
=

ˆ
dt′
dK(t− t′)

dt
F (t′) (5.37)

But since −v(t)ζ = F (t) for the response function it must be Minus Sign.
what we al-
ready talked
about: the
minus sign
in the defi-
nition of the
friction force
here, causes
a wrong sign
in the fluc-
dis-t later.

Minus Sign.
what we al-
ready talked
about: the
minus sign
in the defi-
nition of the
friction force
here, causes
a wrong sign
in the fluc-
dis-t later.

dK(t)

dt
= −δ(t)

ζ
(5.38)

K(t) = −Θ(t)

ζ
(5.39)

and the position expectation value (5.36) becomes

x(t) = −1

ζ

ˆ ∞
0

dt′F (t− t′) (5.40)

The correlation function for the position at initial time and general time t is

C(t) = 〈x(0)x(t)〉 (5.41)

and since 〈x2(0)〉 and 〈x2(t)〉 are both constant if averaged over a long time, we can
write the mean square displacement time derivative, using (5.23), as
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d

dt

〈
[x(t)− x(0)]2

〉
= −2

d

dt
〈x(0)x(t)〉

= −2
d

dt
C(t)

= 2D (5.42)

From this equation using (5.35) and (5.39) we find the relation connecting diffusion and
the fluctuation-dissipation theorem

D = − d

dt
C(t) = kBTK(t) =

kBT

ζ
. (5.43)

5.4. Langevin equation for many variables

We consider a set of dynamical variables {a1, a2, . . . } and the corresponding first order
linear Langevin equation

daj
dt

= Θjkak + δFj(t) (5.44)

in which the entries of the matrix Θjk depend on whether the variables aj represent the
position or the momentum and δFj(t) are the random forces. As for the one variable
case the strength of the noise is given by

〈δFj(t)〉 = 0, 〈δFj(t)δFk(t′)〉 = 2Bjkδ(t− t′) (5.45)

The matrix Θjk can be diagonalized by a unitary transformation. The eigenvector
relative to a vanishing eigenvalue of this matrix corresponds to a dynamical constant of
motion, i.e. the equilibrium condition. If we assume that all this quantities have been
removed from the set {a1, a2, . . . }, for a system that reaches equilibrium in the limit
t→∞ all the eigenvalues have negative real part but can also have an imaginary part.
So the solution of equation (5.44) is given by

aj(t) =
(
eΘt
)
jk
ak(0) +

ˆ t

0

dt′
(
eΘ(t−t′))

jk
δFk(t

′) . (5.46)

We can neglect the first therm for long times since it decays to zero. Then using (5.45)
for the second moment we have
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5.4. Langevin equation for many variables

〈aj(t)ai(t)〉 =

ˆ t

0

dt′
ˆ t

0

dt′′
(
eΘ(t−t′))

jk

(
eΘ(t−t′′))

il
〈δFk(t′)δFl(t′′)〉

=

ˆ t

0

dt′
ˆ t

0

dt′′
(
eΘ(t−t′))

jk

(
eΘ(t−t′′))

il
2Bklδ(t

′ − t′′)

=

ˆ t

0

dt′
(
eΘ(t−t′))

jk

(
eΘ(t−t′))

il
2Bkl

=

ˆ t

0

dt′
(
eΘ(t−t′))

jk
2Bkl

(
eΘT (t−t′))

li
, (5.47)

where T denotes the matrix transpose and we used that, for an arbitrary matrix A it is(
eA
)T

= eA
T

. (5.48)

For large times, we obtain

〈ajai〉eq = 〈aj(∞)ai(∞)〉 =

ˆ ∞
0

dt
(
eΘt
)
jk

2Bkl

(
eΘT t

)
li
≡Mji (5.49)

where Mji denotes the equilibrium value for the second moment. Since 〈ajai〉 = 〈aiaj〉
the matrix Mji = Mij must be symmetric.
Consider now the quantity constructed to be symmetric in {n, i}

ΘnjMji + ΘijMjn = ΘnjMji +MnjΘ
T
ji

=

ˆ ∞
0

dt Θnj

(
eΘt
)
jk

2Bkl

(
eΘT t

)
li

+

ˆ ∞
0

dt
(
eΘt
)
nk

2Bkl

(
eΘT t

)
lj

ΘT
ji

=

ˆ ∞
0

dt
d

dt

(
eΘt
)
nk

2Bkl

(
eΘT t

)
li

= (2eΘtBeΘT t)t=∞ − 2B

= −2B (5.50)

where in the last line we have used that the eigenvalues of Θ have negative real parts.
The last result is another derivation of the fluctuation-dissipation theorem

ΘM + MΘT = −2B (5.51)

We note that since both B and M are defined as second moments they are symmetric
while Θ is not and can be divided in two parts

Θij = iΩij −Kij (5.52)
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with properties

KM = (KM)T = MKT (5.53)

iΩM = −i(ΩM)T = −iMΩT (5.54)

From this last two relations and (5.52) it follows

B = KM = MKT (5.55)

In equation (5.52) the first term represents the oscillatory motion and the quantity KM
is real and symmetric and describes the decaying motion connected with the Onsager
reciprocal relations. To construct the Θ matrix we note that

M−1(iΩ−K)M = −KT − iΩT (5.56)

M−1ΘM + ΘT = −KT − iΩT + iΩT −KT = −2KT (5.57)

M−1ΘM−ΘT = −KT − iΩT − iΩT + KT = −2iΩT (5.58)

As an example we consider the Brownian motion of a harmonic oscillator with equa-
tions of motion given by (5.44)

dx

dt
=

p

m
(5.59)

dp

dt
= −ζ p

m
−mω2x+ δFp(t) (5.60)

The dynamical variables vector, the force matrix and second moment matrix are given
by

a =

(
x
p

)
(5.61)

F =

(
0
δFp

)
(5.62)
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5.4. Langevin equation for many variables

M =

(
〈x2〉 0

0 〈p2〉

)
=

(
kBT/mω

2 0
0 mkBT

)
(5.63)

where the vanishing off diagonal entries of the second moment matrix assures no coupling
between position and momentum. Comparing equation (5.44) with (5.59) and (5.60) one
finds for the Θ matrix

Θ =

(
0 1/m

−mω2 −ζ/m

)
(5.64)

ΘT =

(
0 −mω2

1/m −ζ/m

)
(5.65)

M−1ΘM =

(
0 mω2

−1/m −ζ/m

)
(5.66)

M−1ΘM + ΘT = 2

(
0 0
0 −ζ/m

)
(5.67)

M−1ΘM−ΘT = 2

(
0 mω2

−1/m 0

)
(5.68)

Comparing this last two equations with (5.57) and (5.58) we find

KT = K =

(
0 0
0 ζ/m

)
(5.69)

iΩT =

(
0 −mω2

1/m 0

)
(5.70)

iΩ =

(
0 1/m

−mω2 0

)
(5.71)

and the general result (5.13) of the fluctuation-dissipation theorem is verified

B = KM =

(
0 0
0 ζ/m

)(
〈x2〉 0

0 〈p2〉

)
=

(
0 0
0 〈p2〉 ζ/m

)
=

(
0 0
0 ζkBT

)
(5.72)
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5.5. Non Markovian Langevin equations

In theory of probability given X0, . . . Xn, if the conditional distribution of Xn+1 depends
only on Xn, the model assumes the Markov property or memoryless property. In this
contest of non-equilibrium statistical mechanics it is used to indicate that the friction at
time t is proportional to the velocity at the same time and that the noise is white delta
correlated. The term white noise means that the Fourier transform of the correlation
function of the noise is independent of frequency since B is constant

〈δF (t)δF (t′)〉 = 2B δ(t− t′) =

ˆ
dω

2π
2B e−iωt (5.73)

Generally real problems are not Markovian, the friction at time t depends on the history
of the velocity at earlier times, i.e. it has a memory. We can replace the friction
coefficient ζ with a memory function K(t) so that

−ζv(t) −→ −
ˆ t

−∞
ds K(t− s)v(s) = −

ˆ ∞
0

ds K(s)v(t− s) (5.74)

Accordingly the fluctuation-dissipation theorem must be modified and the noise becomes
colored. A simple example of a memory (non Markovian) behavior of the system is given
by the harmonic oscillator, arising when the momentum is eliminated. The equations of
motion are again (5.59) and (5.60) with solution given by (5.46)

p(t) = e−ζ(t−t0)/m p(t0) +

ˆ t

t0

dt′ e−ζ(t−t
′)/m

(
δFp(t

′)−mω2x(t′)

)
(5.75)

By sending t0 −→ −∞ and setting s = t− t′ we can write

p(t) =

ˆ ∞
0

ds e−ζs/m
(
δFp(t− s)−mω2x(t− s)

)
(5.76)

and substituting this back into (5.59) we find

dx(t)

dt
=

1

m

ˆ ∞
0

ds e−ζs/m
(
δFp(t− s)−mω2x(t− s)

)
= δFx(t)−

ˆ ∞
0

ds K(s) x(t− s) (5.77)

where the memory function and the new random force acting on the position with the

x subscript, given by

K(s) = ω2e−ζs/m (5.78)
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δFx(t) =
1

m

ˆ ∞
0

ds e−ζs/m δFp(t− s) (5.79)

From the equipartition theorem at equilibrium the second moment of x is

〈
x2
〉
eq

=
kBT

mω2
(5.80)

For the second moment of the new random force using (5.73) and (5.13) we have

〈δFx(t)δFx(t′)〉 =
1

m2

ˆ ∞
0

ds e−ζs/m
ˆ ∞

0

ds′ e−ζs
′/m 〈δFp(t− s)δFp(t′ − s′)〉

= 2
ζkBT

m2

ˆ ∞
0

ds e−ζs/m
ˆ ∞

0

ds′ e−ζs
′/mδ(t− s− t′ + s′) (5.81)

We can distinguish two cases:

I t− t′ ≥ 0 =⇒ s = t− t′ + s′

〈δFx(t)δFx(t′)〉 ∼
ˆ ∞

0

ds′ e−ζs
′/m e−ζ(t−t

′+s′)/m

= e−ζ(t−t
′)/m

ˆ ∞
0

ds′ e−ζ2s
′/m (5.82)

II t− t′ ≤ 0 =⇒ s′ = t′ − t+ s

〈δFx(t)δFx(t′)〉 ∼
ˆ ∞

0

ds e−ζs/m e−ζ(t
′−t+s)/m

= e−ζ(t
′−t)/m

ˆ ∞
0

ds e−ζ2s/m (5.83)

So with both cases using (5.80) and (5.78) we find

〈δFx(t)δFx(t′)〉 =
2kBTζ

m2
e−ζ|t−t

′|/m
ˆ ∞

0

ds e−ζ2s/m

=
kBT

m
e−ζ|t−t

′|/m

=
〈
x2
〉
eq
K(|t− t′|) (5.84)
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We remark that since we could distinguish two different cases this already implied a non
analyticity of the function. This last result is a non Markovian version of the fluctuation-
dissipation theorem where the correlation function of the new noise is proportional to
the memory function of the new friction

〈δFx(t)δFx(t′)〉 =
〈
x2
〉
eq
K(|t− t′|) ≡ CFx(t− t′) (5.85)

If we are interested in the spectrum of CFx(t− t′) we can take the Fourier transform

C̃Fx(ω) =

ˆ ∞
−∞

dt
kBT

m
e−ζ|t|/meiωt

=
kBT

m

{ˆ 0

−∞
dt eζt/m+iωt +

ˆ ∞
0

dt e−ζt/m+iωt

}
=
kBT

m

{ˆ ∞
0

dt e−ζt/m−iωt +

ˆ ∞
0

dt e−ζt/m+iωt

}
=
kBT

m

{
1

ζ
m

+ iω
+

1
ζ
m
− iω

}
=
kBT

m

2 ζ
m

ζ
m

2
+ ω2

(5.86)

⇒ C̃Fx(ω) =
2kBT

m

ζ
m

ζ
m

2
+ ω2

. (5.87)

This spectrum is not white as before since it is not constant but has a term involving
the frequency ω. However in the limit of small mass (large friction) and long time limit
(small frequency) the spectrum becomes white again

lim
ω→0

C̃Fx(ω) =
2kBT

ζ
(5.88)

Doing the inverse Fourier transform of this last result we obtain

CFx(t− t′) =
2kBT

ζ
δ(t− t′) (5.89)

and using (5.85) for the memory function K(t) we find the expression

K(t) =
CFx(t)

〈x2〉eq
= 2

mω2

ζ
δ(t)

1

2
=
mω2

ζ
δ(t) (5.90)

68



5.5. Non Markovian Langevin equations

corresponding to Markovian friction. We had to add a factor 1
2
, because K is only

non-zero on the positive t-axis and we have to take care of this asymmetry also for the
delta-function. Equations (5.77) and (5.85) then become

dx(t)

dt
= δFx(t)−

mω2

ζ
x(t) (5.91)

〈δFx(t)δFx(t′)〉 =
2kBT

ζ
δ(t− t′) (5.92)

Quite generally eliminating variables from a Markovian system of equations leads to
memory effects and non Markovian equations. Conversely if memory decays exponen-
tially in time, non Markovian Langevin equation can be made Markovian by introducing
coupled variables. As a short derivation of the one dimensional Langevin equation for
the harmonic oscillator by taking the limit of small mass of (5.60) we get

dp

dt
= −ζ dx

dt
−mω2x+ δFp(t) = m

d2x

dx2
= 0 (5.93)

⇒ ζ
dx

dt
= −mω2x+ δFp(t) (5.94)

This equation is of the same form of (5.6) with the substitutions

ζ −→ mω2 (5.95)

m −→ ζ (5.96)

v(t) −→ x(t) (5.97)

In analogy with the derivation for the Markovian Langevin equation we have

〈
x2
〉
eq

=
B

ζmω2
(5.98)

and from the equipartition theorem it must be

〈
x2
〉
eq

=
kBT

mω2
(5.99)

Equating this last two gives the noise strength as found before with the fluctuation
dissipation theorem

B = ζkBT (5.100)
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5. Stochastics

5.6. Projection and partition in phase-space

We now see the Liouville equation from which in principle Langevin equations can be de-
rived. A microscopic state is completely described classically by 6N variables (p3N , q3N)
governed by Hamilton’s equations

q̇i =
∂H(p, q)

∂pi
, ṗi = −∂H(p, q)

∂qi
(5.101)

This set of first order differential equations determines the trajectory in the phase space
with the initial time condition. As an example the one-dimensional harmonic oscillator
is subjected to the Hamiltonian

H(p, q) =
p2

2m
+
mω2q2

2
(5.102)

leading to the differential equations

q̇i =
pi
m
, ṗi = −mω2qi (5.103)

for which the solutions are

qi(t) = q0 cos(ω(t− t0)) +
p0

mω
sin(ω(t− t0)) (5.104)

pi(t) = −mωq0 sin(ω(t− t0)) + p0 cos(ω(t− t0)) (5.105)

The expectation values of physical observable follows from the phase space density
ρ(p, q, t) with the normalization condition

ˆ
dpdq ρ(p, q, t) = 1 ∀t (5.106)

Generally whenever an integral of a quantity A(t) over an entire domain is constant we
have a conservation law of the form

∂A

∂t
+∇(vA) = 0 (5.107)

where v is the velocity,Av is a flux and there is the correspondence with the 6N dimen-
sional vectors
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5.6. Projection and partition in phase-space

∇ =

(
∂

∂pi
,
∂

∂qi

)
(5.108)

v =

(
∂pi
∂t
,
∂qi
∂t

)
(5.109)

So for the phase space density we have

∂ρ

∂t
+

∂

∂pi

(
∂pi
∂t
ρ

)
+

∂

∂qi

(
∂qi
∂t
ρ

)
= 0 (5.110)

which by using Hamilton equations (5.101) becomes

∂ρ

∂t
− ∂

∂pi

(
∂H

∂qi
ρ

)
+

∂

∂qi

(
∂H

∂pi
ρ

)
= 0 (5.111)

Since for the second derivatives we have

∂2H

∂pi∂qi
=

∂2H

∂qi∂pi
(5.112)

this terms cancel out in (5.111) and we obtain

∂ρ

∂t
− ∂H

∂qi

∂ρ

∂pi
+
∂H

∂pi

∂ρ

∂qi
= 0 (5.113)

∂ρ(p, q, t)

∂t
+Lρ(p, q, t) = 0 (5.114)

where we have defined the Liouville operator

L ≡ ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
(5.115)

The formal solution of (5.114) is given by

ρ(p, q, t) = e−Ltρ(p, q, 0) (5.116)

The Liouville operator has the formal properties:
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5. Stochastics

I L is anti-self-adjoint operator:

LAρ =

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
Aρ

=

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
Aρ

=

(
∂

∂qi
q̇i +

∂

∂pi
ṗi

)
Aρ (5.117)

Comparing (5.107) with (5.114) and integrating over the phase-space volume dV =
dpdq we have

ˆ
V

dV LAρ =

ˆ
V

dV ∇vAρ =

˛
S(V )

dS vAρ (5.118)

Since typically the system is confined to a finite region in the phase space, the
density vanishes at the boundary thus

ˆ
V

dV LAρ = 0 (5.119)

Also because L contains first derivatives we can write

LAρ = ρLA+ ALρ (5.120)

and insert into (5.119) to get

ˆ
V

dV ALρ = −
ˆ
V

dV ρLA (5.121)

i.e. L is anti-self-adjoint in phase-space.

II Dynamical evolution:
Assuming the time dependance to be only implicit we have for a generic dynamical
variable

A(p, q, t) = A(p(t), q(t)) ≡ A(t) (5.122)
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5.6. Projection and partition in phase-space

A(p, q, t = 0) ≡ A (5.123)

The initial rate of change with time is calculated from

(
∂A(p, q, t)

∂t

)
t=0

=
∂A

∂qi

(
∂qi
∂t

)
t=0

+
∂A

∂pi

(
∂pi
∂t

)
t=0

=

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
A

= LA (5.124)

This can be generalized easily to nth order derivatives as

(
∂nA(p, q, t)

∂tn

)
t=0

= LnA (5.125)

Then the time dependent dynamical variables can be expanded in Taylor’s series

A(p, q, t) =
∞∑
n=0

tn

n!

(
∂nA(p, q, t)

∂tn

)
t=0

=
∞∑
n=0

tn

n!
LnA

= eLtA (5.126)

which is the solution of the differential operator equation

∂

∂t
A(p, q, t)−LA(p, q, t) = 0 (5.127)

So in analogy with quantum mechanics we can view the Liouville equation (5.114)
for the distribution function ρ as in the Schroedinger picture and the Liouville
equation (5.127) for the dynamical variable A(t) as in the Heisemberg picture. The
operator exp(Lt) moves the dynamical variables along a trajectory in phase space
as a propagator and has the properties

eLtA(p, q, 0) = eLtA = A(eLtp, eLtq, 0) (5.128)
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5. Stochastics

eLtAB = (eLtA)(eLtB) (5.129)

The expectation value of a dynamical variable over the phase space at time t is
given by

〈A(t)〉 =

ˆ
V

dV Aρ(p, q, t)

=

ˆ
V

dV Ae−Ltρ(p, q, 0) (5.130)

but also equivalently by

〈A(t)〉 =

ˆ
V

dV A(p, q, t)ρ(p, q, 0)

=

ˆ
V

dV ρ(p, q, 0)eLtA (5.131)

since from (5.121) the Liouville operator is anti-self-adjoint.

At this point we want to find the matrix form of the Liouville equation since we found
that for a dynamical variable is linear. We define the scalar product of two dynamical
variables

〈
A,B†

〉
eq

=

ˆ
V

dV ρeqAB
† (5.132)

where ρeq is the equilibrium density distribution. Taking the compete and orthonormal

set of functions {φn} in the phase space, with
〈
φjφ

†
k

〉
= δjk the matrix form of the

dynamical variable is

A(p, q, t) =
∑
m

am(t)φm(p, q) (5.133)

with

am(t) =
〈
A(p, q, t), φ†m(p, q)

〉
(5.134)

Inserting (5.133) into the Liouville equation (5.127) we have

∑
m

ȧm(t)φm(p, q) =
∑
m

am(t)Lφm(p, q) (5.135)
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5.6. Projection and partition in phase-space

From completeness of the set of functions we can integrate over the equilibrium distri-
bution to get

ȧm(t) =
∑
m

am(t)Lmnφm(p, q) (5.136)

with

Lmn =

ˆ
dV ρeqLφ

†
n =

〈
Lφ†n

〉
(5.137)

Usually we are only interested in a subset of variables. For example we might have

∂

∂t

(
a1(t)
a2(t)

)
=

(
L11 L12

L21 L22

)(
a1(t)
a2(t)

)
(5.138)

of which the a1(t) variables are the relevant, while the a1(t) variables are irrelevant. We
have

ȧ2(t) = L22a2(t) + L21a1(t) (5.139)

a2(t) = eL22ta2(0) +

ˆ t

0

dseL22(t−s)L21a1(s) (5.140)

ȧ1(t) = L11a1(t) + L12a2(t)

= L11a1(t) + L12

ˆ t

0

dseL22(t−s)L21a1(s)︸ ︷︷ ︸
non markovian friction

+L12e
L22ta2(0)︸ ︷︷ ︸

noise term

(5.141)

As mentioned before eliminating the variable a2(t)from a Markovian system of equations
leads to memory effects and non Markovian equations,.This can be seen from the non
Markovian friction term, here dependent on the history of a1(t).
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Chapter 6
Fokker-Planck Equations

6.1. Motivation and derivation from Langevin equation

Linear Langevin equations can be solved exactly, while nonlinear ones are very hard to
treat analytically. We consider the general case

ẋ(t) =
p(t)

m
ṗ(t) = −ζ p

m
− U ′(x) + δFp(t) (6.1)

where the nonlinear terms are contained in the spatial derivative of the potential. In the
linear case, the equations for 〈x〉 and 〈p〉 only involve the first moment of each. In the
nonlinear case let us consider the typical example of a periodic potential

U(x) = U0 cos(x) (6.2)

U ′(x) = −U0 sin(x) = −U0(x− 1

6
x3 + . . . ) (6.3)

The average 〈U ′(x)〉 contains higher moments of x

〈U ′(x)〉 = U0(−〈x〉+
1

6

〈
x3
〉
− . . . ) (6.4)

so that

U ′(〈x〉) = U0(−〈x〉+
1

6
〈x〉3 − . . . ) 6= 〈U ′(x)〉 (6.5)

One obtains coupled equations for the moments 〈xn〉, which are difficult to solve or even
not solvable often.

In the following, we consider the nonlinear Langevin equation for the N dynamical
variables {a1, . . . , aN} in the form

daj(t)

dt
= hj (a) + δFj(t) , (6.6)
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6. Fokker-Planck Equations

where in general hj is some nonlinear given function of the dynamical variables {a1, . . . , aN},
but without memory. The random force δF (t) obeys the usual relations (5.45) for
a Gaussian distribution with delta correlated second moment. Instead of fluctuating,
stochastic trajectories aj(t), we are now interested in the probability distribution f(a, t)
averaged over the noise δF (t). As the phase space density f(a, t) is conserved at all
times the normalization condition holds

ˆ
daf(a, t) = 1 (6.7)

so that the time derivative of f(a, t) is balanced by a the divergence of a flux in the
form of a conservation equation

∂f

∂t
+

∂

∂aj

(
∂aj
∂t

f

)
= 0 (6.8)

Plugging (6.6) into (6.8) yields

∂f

∂t
= − ∂

∂aj

(
hj(a)f + δFj(t)f

)
= −Lf − ∂

∂aj
δFj(t)f (6.9)

where the operator

L =
∂

∂aj
hj(a) (6.10)

is the analogue of the Liouville operator but acting on any function f(a, t). The formal
solution of equation (6.9) is of the form

f(a, t) = e−tLf(a, 0)−
ˆ t

0

ds e−(t−s)L ∂

∂aj
δFj(s)f(a, s) (6.11)

where f(a, t) depends on the noise δF (s) only for times s earlier than t. Plugging (6.11)
back into (6.9), we obtain a series expansion for f(a, t) in powers of the noise

∂f(a, t)

∂t
= −Lf(a, t)− ∂

∂aj
δFj(t)e

−tLf(a, 0)

+
∂

∂aj
δFj(t)

ˆ t

0

ds e−(t−s)L ∂

∂ak
δFk(s)f(a, s) (6.12)

where f(a, s) still implicitly depends on the noise δF (s) at time s < t. Iteratively
inserting (6.11) into (6.12), one generates higher order terms in δF . The average over
the noise can be performed exactly and gives

∂ 〈f(a, t)〉
∂t

(6.13)

=− L 〈f(a, t)〉+
∂

∂aj

ˆ t

0

dse−(t−s)L 〈δFj(t)δFk(s)〉
∂

∂ak
〈f(a, s)〉 (6.14)

=− L 〈f(a, t)〉+
∂

∂aj
Bjk

∂

∂ak
〈f(a, t)〉 , (6.15)
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6.1. Motivation and derivation from Langevin equation

FP derivation
we still want to do this more explicitly and more clear, when we also have written
something abut gaussian integrals in the appendix.

since 〈δFj(t)f(a, 0)〉 = f(a, 0) 〈δFj(t)〉 = 0 and higher order terms in δF do not
generate additional terms because the noise is Gaussian and has all vanishing cumulants
higher than the second. Overall, we obtain the Fokker-Planck equation for the noise
averaged distribution function 〈f(a, t)〉

∂

∂t
〈f(a, t)〉 = − ∂

∂aj
hj(a) 〈f(a, t)〉+

∂

∂aj
Bjk

∂

∂ak
〈f(a, t)〉︸ ︷︷ ︸

noise

. (6.16)

which we rewrite changing our notation 〈f〉 → f from this point forward

∂

∂t
f(a, t) = − ∂

∂aj
hj(a)f(a, t) +

∂

∂aj
Bjk

∂

∂ak
f(a, t) (6.17)

As an examples we consider a particle in an external potential U(x) with equations
of motion

ẋ(t) =
p(t)

m
, ṗ(t) = −U ′(x)− ζ p

m
+ δF (t) (6.18)

and delta correlated random force given by the fluctuation dissipation theorem (5.13)

〈δFj(t)δFl(t′)〉 = 2ζkBTδ(t− t′) . (6.19)

The quantities defined above are then given by

a =

(
x(t)
p(t)

)
h =

(
p(t)/m

−U ′(x)− ζp(t)/m

)
(6.20)

δF =

(
0
δFp

)
B =

(
0 0
0 ζkBT

)
(6.21)

The Fokker Planck (FP) equation for f = f(x, p, t) reads

∂f

∂t
= − ∂

∂x

p

m
f +

∂

∂p

(
U ′(x) + ζ

p

m

)
f + ζkBT

∂2f

∂p2
(6.22)

Without friction the FP equation reduces to the standard Liouville equation for the
phase space density ρ of a system with Hamiltonian H = p2/2m+ U(q)

L =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
=

∂

∂q

p

m
− ∂

∂p
U ′(q) (6.23)

∂ρ

∂t
= −Lρ = − ∂

∂q

p

m
ρ+

∂

∂p
U ′(q)ρ (6.24)
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6. Fokker-Planck Equations

as we can see by setting f = ρ and ζ = 0 in (6.22).
One stationary solution of the FP equation is given by feq = e−H/kBT/Z, where Z =´

dxdp e−βH(x,p) is the partition function. We find indeed for f = feq in (6.22)

∂feq
∂t

= − p

m

∂f

∂x
+ U ′(x)

∂f

∂p
+
ζ

m
f + ζ

p

m

∂f

∂p
+ ζkBT

∂2f

∂p2

∣∣∣∣
f=feq

=

[
p

m
β
∂H

∂x
− U ′(x)β

∂H

∂p
+
ζ

m
− ζβ p

m

∂H

∂p
− ζ ∂

2H

∂p2
+ ζβ

(
∂H

∂p

)2
]
feq

=

[
p

m
βU ′(x)− U ′(x)β

p

m
+
ζ

m
− ζβ p

m

∂H

∂p
− ζ

m
+ ζβ

(
∂H

∂p

)2
]
feq

=

[
−ζβ p

m

∂H

∂p
+ ζβ

(
∂H

∂p

)2
]
feq

= 0 (6.25)

Now we introduce the operator notation

∂

∂t
f(a, t) = Df(a, t) , (6.26)

where D is the Fokker-Planck operator

D ≡ − ∂

∂aj
hj(a) +

∂

∂aj
Bjk

∂

∂ak
(6.27)

composed by the Liouville operator and a stochastic part. The formal solution of (6.26)
reads

f(a, t) = eDtf(a, 0) . (6.28)

The expectation value of an arbitrary function Φ(a) in a Schroedinger-picture like way
is given by

〈Φ(a)〉 =

ˆ
daΦ(a)f(a, t) =

ˆ
daΦ(a)eDtf(a, 0) . (6.29)

We can define the adjoint operator D† viaˆ
daΦ(a)DΨ(a) =

ˆ
daΨ(a)D†Φ(a) (6.30)

and obtain with an integration by parts, using (6.27)

D† = hj(a)
∂

∂aj
+

∂

∂aj
Bjk

∂

∂ak
. (6.31)

Thus, we can also express the expectation value in a Heisenberg-picture like way where
the average is taken over the initial distribution

〈Φ(a)〉 =

ˆ
da f(a, 0)eD

†tΦ(a) =

ˆ
da f(a, 0)Φ(a, t) . (6.32)
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6.2. Smulochowski equation

where the time evolution of the dynamical function is given by

Φ(a, t) = eD
†tΦ(a) with Φ(a, 0) = Φ(a) (6.33)

The equation of motion for the time dependent variable becomes

∂Φ(a, t)

∂t
=

[
hj(a)

∂

∂aj
+

∂

∂aj
Bjk

∂

∂ak

]
Φ(a, t) (6.34)

We note that solving a FP equation for f or for an arbitrary function Φ is equally
difficult.

6.2. Smulochowski equation

We now consider the same general system as in the previous section, but assume, that
the inertia term mẍ(t) is negligible, thus equation (6.1) gives

ẋ(t) = −1

ζ
U ′(x) +

1

ζ
δFp(t) (6.35)

and absorbing the friction in the noise

ẋ(t) = −1

ζ
U ′(x) + δFx(t) (6.36)

Comparing with (6.6) and using (5.45) for δFp = ζδFx, with (5.13) gives

a(t) = x(t) , h = −U
′(x)

ζ
, Bjk = B =

kBT

ζ
(6.37)

from which the FP equation (6.17) becomes the Smulochowski (SM) equation

∂f(x, t)

∂t
=

∂

∂x

U ′(x)

ζ
f(x, t) +

∂2

∂x2

kBT

ζ
f(x, t)

=
kBT

ζ

∂

∂x
e−U/kBT

∂

∂x
eU/kBTf

= D
∂

∂x
e−U/kBT

∂

∂x
eU/kBTf (6.38)

which describe diffusion in an external potential with the diffusion coefficient D =
kBT/ζ = B. Again, we notice, that the FP equilibrium solution feq = e−U/kBT/Z
is a stationary solution, but there exist also further stationary solutions, that are not
stationary solutions of the full FP equation.

Next, we consider a more intuitive derivation of the SM equation in terms of a conti-
nuity equation

∂f(x, t)

∂t
= −∂J(x, t)

∂x
, (6.39)
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6. Fokker-Planck Equations

where the flux J is given by

J(x, t) = −1

ζ
U ′(x)f −D ∂

∂x
f . (6.40)

consisting of a force contribution and a diffusive contribution. If we define the function
g(x, t)

f =
√
feqg =

e−U/2kBT√
Z

g . (6.41)

and insert into (6.39), using (6.40), we obtain

e−U/2kBT
∂g

∂t
=

1

ζ

∂

∂x
U ′e−U/2kBTg +D

∂2

∂x2
e−U/2kBTg

=
1

ζ
U ′′e−U/2kBTg − 1

ζ2kBT
U ′2e−U/2kBT +

1

ζ
U ′e−U/2kBTg′

+D
∂

∂x

(
− U ′

2kBT
e−U/2kBTg + e−U/2kBTg′

)
=

1

ζ
U ′′e−U/2kBTg − 1

ζ2kBT
U ′2e−U/2kBT +

1

ζ
U ′e−U/2kBTg′

+D

(
− U ′′

2kBT
e−U2kBTg +

U ′2

4kBT 2
e−U/2kBTg

− U ′

2kBT
e−U/2kBTg′ − U ′

2kBT
e−U/2kBTg′ + e−U/2kBTg′′

)
=
U ′′

2ζ
e−U/2kBTg − U ′2

4ζkBT
e−U/2kBTg +

kBT

ζ
e−U2kBTg

′′ .

Thus
∂g

∂t
= D

[
1

2kBT
U ′′ − U ′2

4(kBT )2
+

∂2

∂x2

]
g

= −D
[
− ∂2

∂x2
+ Ueff

]
g (6.42)

where the effective potential is given by

Ueff = − 1

2kBT
U ′′ +

(
U ′

2kBT

)2

. (6.43)

We recognize, that equation (6.42) is nothing but a usual Schroedinger equation, that has
real eigenvalues and eigenfunctions and that therefore a large set of quantum mechanical
tools can be used for this particular FP equation.

6.3. Kramers problem

We are interested in the rate, with which a particle subject to Brownian motion passes
a potential barrier. This process is important in e.g. molecule dissociation or protein
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6.3. Kramers problem

folding. From B the probability to go to A or C are equal, if we neglect inertia.

Figure 6.1.: First well (A) with position x1, potential barrier (B) with position x2 and
second well (C)

When we start at A, with which rate does a particle come to point C? To treat this
problem we will use the SM equation as the full FP equation is too difficult.

∂f

∂t
= D

∂

∂x
e−U/kBT

∂

∂x
eU/kBTf (6.44)

We treat this problem with a stationary solution ḟ = 0 with the assumption for the flux
(6.40)

J = −De−Ũ ∂

∂x
eŨf = const. 6= 0 , (6.45)

where we introduced Ũ = U/kBT for the sake of brevity. Rearranging eq (6.45) yields

JeŨ

D
= − ∂

∂x
eŨf ⇒

ˆ x2

x1

dx
JeŨ

D
= −

[
eŨf

]x2
x1

(6.46)

or since J and D are assumed constant

J

D
=
−eŨ(x2)f(x2) + eŨ(x1)f(x1)´ x2

x1
dx eŨ

. (6.47)

We assume an adsorbing boundary condition at x2 meaning that f(x2) = 0 and no
particle can get to x2 from the right. Thus,

J

D
=
eŨ(x1)f(x1)´ x2
x1

dx eŨ
. (6.48)

For a high barrier, we can expand Ũ near the maximum in x2

Ũ = Ũ2 −
Ũ ′′2
2

(x2 − x)2 , (6.49)
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6. Fokker-Planck Equations

where Ũ2 = Ũ(x2) and Ũ ′′2 ≥ 0, and thusˆ x2

x1

dx eŨ = eŨ2

ˆ x2

x1

dx e−
Ũ′′2
2

(x2−x)2

'1

2
eŨ2

ˆ ∞
−∞

dx e−
Ũ′′2
2

(x2−x)2 =
1

2
eŨ2

√
2π

Ũ ′′2
= eŨ2

√
π

2Ũ ′′2

With this approximation, equation (6.48) reads

J = De−(Ũ2−Ũ1)

√
2Ũ ′′2
π
f(x1) (6.50)

so that the flux depends exponentially on the potential difference and also on the curva-
ture Ũ ′′2 of the barrier. We assume, that f(x1) is given by the equilibrium distribution

f(x1) =
e−Ũ(x1)´ x2

x0
dx e−Ũ(x)

. (6.51)

This is justified because

J = −De−Ũ ∂

∂x
eŨf

and thus
∂

∂x
feŨ = − J

D
eŨ ,

which means, that for eŨ small, also ∂
∂x
feŨ is small.

We can also expand the potential around x1

Ũ(x) ' Ũ1 +
Ũ ′′1
2

(x− x1)2 (6.52)

and insert this into (6.51), yielding

f(x1) ' 1´ x2
x0

dx e−
Ũ′′1
2

(x−x1)2
∼

√
Ũ ′′1
2π

(6.53)

Finally we obtain for the flux

J =
D
√
Ũ ′′1 Ũ

′′
2

π
e−∆Ũ =

D
√
U ′′1U

′′
2

πkBT
e−∆U/kBT (6.54)

where ∆U = U2−U1. So for the rate of crossing the barrier κ = J/2 (i.e. the rate to go
from A to C), using D = kBT/ζ we find

κ =

√
U ′′1U

′′
2

2πζ
e−∆U/kBT , (6.55)
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6.4. Mean first-passage time

We consider the Smulochowski equation

∂f(x, t)

∂t
= Df(x, t) (6.56)

with

D = D
∂

∂x
e−Ũ

∂

∂x
eŨ (6.57)

and look at the Green’s function G(x, t;x0, t0) that is defined via(
∂

∂t
−D

)
G(x, t;x0, t0) = δ(x− x0)δ(t− t0) (6.58)

Statement:

f(x, t) =

ˆ
dx̃ f0(x̃)G(x, t; x̃, t0) (6.59)

solves the SM eq. where

f(x, t0) = f0(x) . (6.60)

First we proof (6.59)(
∂

∂t
−D

)
f =

(
∂

∂t
−D

) ˆ
dx̃ f0(x̃)G(x, t; x̃, t0) (6.61)

=

ˆ
dx̃ f0(x̃)

(
∂

∂t
−D

)
G(x, t; x̃, t0) (6.62)

=

ˆ
dx̃f0(x̃)δ(x− x̃)δ(t− t0) (6.63)

= f0(x)δ(t− t0) (6.64)

Thus f is a solution for all times t 6= t0.
Now we proof (6.60), where we use that

Df = − ∂

∂x
J(x, t) (6.65)

and integrate (6.58) over space

ˆ x0+ε

x0−ε
dx δ(x− x0)δ(t− t0) = δ(t− t0) =

∂

∂t

ˆ
dxG+ J(x+ ε, t)− J(x− ε, t)

For ε→∞, the flux J vanishes and we find

ˆ
dxG = θ(t− t0) , (6.66)
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6. Fokker-Planck Equations

which corresponds to a particle being created at t = t0. If we integrate over time, we
find
ˆ t0+ε

t0−ε
δ(x− x0)δ(t− t0) = δ(x− x0) = G(x, t0 + ε;x0, t0) +

ˆ t0+ε

t0−ε
dt

∂

∂x
J(x, t0 + ε)

Here we used that G = 0 for t < t0. Again, we use that in the limit ε → 0, the flux
vanishes and thus G(x, t0 + ε;x0, t0) = δ(x− x0), which can be inserted into (6.59) and
yields

f(x, t0) = lim
ε→0

f(x, t0 + ε) = lim
ε→0

ˆ
dx̃ f0(x̃)G(x, t0 + ε; x̃, t0) (6.67)

=

ˆ
dx̃ f0(x̃)δ(x− x̃) = f0(x) (6.68)

We consider the initial value problem

f(x, t) = eD(t−t0)f0(x) =

ˆ
dx̃ eD(t−t0)δ(x− x̃)f0(x̃) (6.69)

f(x, t) =

ˆ
dx̃ G(x, t; x̃, t0)f0(x̃) (6.70)

and conclude

G(x, t;x0, t0) =

{
eD(t−t0)δ(x− x0) for t > t0

0 for t < t0
(6.71)

= θ(t− t0)eD(t−t0)δ(x− x0) (6.72)

From this we conclude

∂

∂t
G = δ(t− t0)eD(t−t0)δ(x− x0) +Dθ(t− t0)eD(t−t0)δ(x− x0) (6.73)

and thus (
∂

∂t
−D

)
G = δ(t− t0)δ(x− x0) (6.74)

and we find G = 0 for t < t0.
We consider a stochastic motion in the space of variables a,a(t) and start at t = 0

at point a0. The space V shall be restricted by a surface ∂V . The first passage time,
is the time when the trajectory reaches the surface ∂V for the first time. For many
realizations, there exists a first-passage time (FPT) distribution and we are interested
in the mean FPT.

The motion of the distribution obeys the FP equation. When we consider all trajecto-
ries, that are still inside the volume V , we have to eliminate trajectories that ’touched’
∂V , i.e. we have adsorbing boundary conditions f(a, t)|∂V = 0. We consider the initial
value problem

fa0(a, t) = eDtδ(a− a0) (6.75)
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6.4. Mean first-passage time

The fraction of trajectories still in V , that can be interpreted as a kind of survival
probability is given by

Sa0(t) =

ˆ
V

da fa0(a, t) (6.76)

and vanishes for large times t → ∞. The amount of trajectories leaving the volume V
in a time interval dt is given by S(t)− S(t+ dt). We define the FPT distribution via

ρFP(a0, t) = Sa0(t)− Sa0(t+ dt) (6.77)

or

ρFP(a0, t) = −dSa0(t)

dt
. (6.78)

The mean FPT τ is the first moment of ρ and the n-th moment is given by

TFP
n (a0) =

ˆ ∞
0

dt tnρFP(a0, t) = −
ˆ

dt tn
∂

∂t

ˆ
V

dafa0(a, t) (6.79)

= −
ˆ
V

da

ˆ
dt tn

∂fa0(a, t)

∂t
(6.80)

The mean first passage time can thus be calculated via

τ(a0) = TFP
1 (a0) =

ˆ ∞
0

dt tρFP(a0, t) = −
ˆ ∞

0

dt t
dSa0(t)

dt

= −tSa0(t)|∞0 +

ˆ ∞
0

dtSa0(t)

(6.81)

(6.82)

We find that for the first addend

lim
t→∞

tSa0(t) = lim
t→∞

ˆ
V

da tfa0(a, t) = lim
t→∞

ˆ
V

da teDtδ(a− a0) = 0 (6.83)

as it decays exponentially. Thus, we obtain

τ(a0) =

ˆ ∞
0

dt

ˆ
V

da eDtδ(a− a0) =

ˆ
dt

ˆ
V

δ(a− a0)eD
†t1 (6.84)

We perform the space integration, Da0 then denotes the operator D acting on a0

τ(a0) =

ˆ ∞
0

eD
†
a01 (6.85)

or

D†a0
τ(a0) =

ˆ ∞
0

D†a0
eD
†
a0
t1 =

ˆ ∞
0

dt
d

dt
eD
†t1 (6.86)

= eD
†t1|∞0 = −1 , (6.87)
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6. Fokker-Planck Equations

as eD
†t → 0 for t→∞, because tD†1 = 0. So we conclude, that

D†τ(a0) = −1 (6.88)

and
τ(a0) = 0 (6.89)

for a0 on ∂V , i.e. a initial point on the surface immediately leaves the system. From
the Smulochowski equation we obtain

∂f(x, t)

∂t
= Df(x, t) (6.90)

we derive a differential equation for the mean first-passage time

D†τ(x1) = −1 , with τ = 0 for x ∈ ∂V . (6.91)

The mean first-passage time τ obeys the adjoined FP/SM equation

∂f

∂t
= Df = D

∂

∂x
e−Ũ

∂

∂x
eŨf =

(
D
∂

∂x
Ũ ′ +D

∂2

∂x2

)
f , (6.92)

with Ũ = U/kBT and D diffusion constant.

D†τ(x) =

(
DŨ ′

∂

∂x
+D

∂2

∂x2

)
τ(x) = DeŨ

∂

∂x
e−Ũ

∂

∂x
τ(x) = −1 (6.93)

Consider starting point x with x0 < x < x2 reflecting boundary condition at x0 , i.e.
flux is zero, barrier at x2: maximum of energy landscape. From eq. (6.93), we obtain

∂

∂x
e−Ũ

∂

∂x
τ(x) =

e−Ũ

D
(6.94)

ˆ x

x0

dx̃
∂

∂x
e−Ũ

∂

∂x
τ(x̃) = −

ˆ x

x0

dx̃

D
e−Ũ(x̃) (6.95)

e−Ũ(x̃) ∂

∂x
τ(x̃)|xx0 = e−Ũ(x) ∂

∂x
τ(x) = −

ˆ x

x0

dx̃

D
e−Ũ(x̃) (6.96)

since Ũ(x0) =∞.

ˆ x2

x

dx̃′
∂

∂x̃′
τ(x̃′) = −

ˆ x2

x

eŨ(x̃′)

ˆ x̃′

x0

dx̃

D
e−Ũ(x̃) = τ(x̃′)|x2x (6.97)

τ(x) =

ˆ x2

x

dx̃′ eŨ(x̃′)

ˆ x̃

x0

e−Ũ(x̃) (6.98)

The last result is an exact expression for τ . We now rederive the Kramers expression
from this result. Therefore, we start at the minimum x = x1

τ(x1) =

ˆ x2

x1

dx̃′ eŨ(x̃′)

ˆ x̃′

x0

dx̃

D
e−Ũ(x̃) =

ˆ x2

x1

dx̃′eŨ(x̃′)I(x̃′) ∼ eŨ(x̃′)+ln I(x̃′) (6.99)

88



6.4. Mean first-passage time

Expand around the maximum in the integral at x̃′ = x2

ln I(x̃′) = ln I(x2) + . . . (6.100)

Leading term:

τ =

ˆ x2

x1

dx̃′ eŨ(x̃′)

ˆ x2

x0

dx̃

D
e−Ũ(x̃)

This approximation works well as long as ∆Ũ � 1.

τ '
ˆ x2

x1

dx̃′ eŨ(x̃′)

ˆ ∞
−∞

dx̃

D
e−Ũ(x̃) (6.101)

'
ˆ x2

x1

dx̃′ eŨ(x̃′)

ˆ ∞
−∞

dx̃

D
e−Ũ1−Ũ ′′1 (x̃−x1)2/2 (6.102)

'
ˆ x2

−∞
dx̃′ eŨ2−Ũ ′′2 (x̃′−x2)2

√
2π

Ũ ′′1

1

D
e−Ũ1 (6.103)

' 1

2
eŨ2

√
2π

Ũ ′′2

1

D

√
2π

Ũ ′′1
e−Ũ1 (6.104)

τ(x1) =
1

D
e(U2−U1)/kBT

πkBT√
U ′′1U

′′
2

= J−1 (6.105)

The particle flux in the Kramers approximation corresponds to the frequency of particles
reaching the barrier top, inverse mean-first passage time K = J/2.

Next, we will discuss the kinetic invariance of the FP equation We allow for the
diffusion coefficient to depend on the position

∂

∂t
f(x, t) =

∂

∂x
D(x)e−βU

∂

∂x
eβUf(x, t) (6.106)

The stationary meandistribution is given by

〈f(x)〉 = lim
T→∞

ˆ T

0

dt

T
f(x, t) ≡ e−βU (6.107)

ˆ x2

x1

dx e−βU(x) = Z (partition function) (6.108)

We define the rescaled time independent coordinate x̃(x)

∂

∂x
=
∂x̃(x)

∂x

∂

∂x̃
= x̃′

∂

∂x̃
= x̃′(x̃)

∂

∂x̃
. (6.109)

Further we define f = f̃ x̃′ and insert this into (6.106)

x̃′
∂f̃

∂t
= x̃′

∂

∂x̃
De−βU x̃′

∂

∂x̃
eβU x̃′f̃ (6.110)
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and thus
∂f̃

∂t
=

∂

∂x̃
De−βU x̃′

∂

∂x̃
eβU x̃′f̃ . (6.111)

Defining eβU x̃′ = eβŨ with βŨ = βU + ln x̃′ and F̃ = (x̃′)2D, we find

∂f̃

∂t
=

∂

∂x̃
D̃e−βŨ

∂

∂x̃
eβŨ f̃ . (6.112)

We conclude, that the FP equation is invariant under the transformation we just made
and notice, that the function D(x) can be transformed into a constant via the right
gauge

D̃(x̃)
!

= D̃0 → x̃′ = (D̃0/D(x))1/2 (6.113)

βŨ = βU +
1

2
ln(D̃0/D(x)) (6.114)

The partition function stays invariant per definition

Z =

ˆ x2

x1

dx e−βU(x) =

ˆ x̃(x2)

x̃(x1)

dx̃
e−βU(x̃)

dx̃/dx
=

ˆ
dx̃ e−βU−ln x̃′ =

ˆ
dx̃ e−βŨ(x̃) .

Thus we can shift the diffusive effects into the free energy landscape and vice versa.

6.5. Master equations

We start with the single variable Smulochowski (SM) equation

∂

∂t
f(x, t) =

∂

∂x
D(x)e−Ũ(x) ∂

∂x
eŨ(x)f(x, t) (6.115)

=
∂

∂x

[
D(x)

∂

∂x
f +D(x)f

∂

∂x
Ũ

]
, (6.116)

where D(x) is a more general, position dependent diffusion constant. We now consider
discretized spatial coordinates, where we introduce

xn+1 − xn = d, f(x, t)→ fn(t), Ũ(x)→ Ũn, D(x)→ Dn .

To discretize the spatial derivatives consistently, we consider the first spatial derivative
∂g
∂x

as being the difference of gn+1/2 = (gn+1 + fn)/2 and gn−1/2 = (gn − gn−1)/2 divided

by d. Here ∂g
∂x

corresponds to the right hand side of equation (6.115). With this we
arrive at

dfn(t)

dt
=

[
Dn+1 +Dn

2
e−(Ũn+1+Ũn)/2

(
fn+1e

Ũn+1 − fneŨn

)
/d

− Dn +Dn−1

2
e−(Ũn+Ũn−1)/2

(
fne

Ũn − fn−1e
Ũn−1

)
/d

]
/d

=
Dn+1 +Dn

2d2

[
e−(Ũn−Ũn+1)/2fn+1 − e−(Ũn+1−Ũn)/2fn

]
+
Dn−1 +Dn

2d2

[
e−(Ũn−Ũn−1)/2fn−1 − e−(Ũn−1−Ũn)/2fn

]

90



6.5. Master equations

By elimination of spatial derivatives, we arrive at the discrete Master equation. The
general formulation of a Master equation is given by

dfm(t)

dt
=
∑
n6=m

Wmnfn(t)−
∑
n

Wnmfm(t) , (6.117)

with the transition rates where the Wmn represent growth rates, while the Wnm represent
loss rates, and are given by Fermi golden rule. The formulation above is reffered to as
the gain/loss formulation. An alternative formulation also called matrix or operator
formulation is

dfm(t)

dt
=
∑
n

Dmnfn(t) , (6.118)

with
Dmn = Wmn(1− δmn)− δmn

∑
k

Wkn , (6.119)

where Dmn is called transition rate matrix. To verify this result, we insert (6.119) into
(6.118)

dfm(t)

dt
=
∑
n

(
Wmn(1− δmn)− δmn

∑
k

Wkn

)
fn(t) (6.120)

=
∑
n6=m

Wmnfn(t)−
∑
k

Wkmfm(t) (6.121)

If the probability is conserved, we obtain the relation∑
m

Dmn = 0 . (6.122)

Properties of Master equations:

1. discrete set of states

2. system characterized by occupation/state probabilities fn(t)

3. rate equation characterized transition rate matrix Wmn: rate for reaction from n
to m, which is not necessarily symmetric, rates are non-negative

4. matrix has at least one eigenvalue that is zero, all other eigenvalues have negative
real component (decay to equilibrium)

5. expectation value 〈A(t)〉 =
∑

mAmfm(t)

To interpret the last property, we consider the formal solution of the Master equation
(6.118)

fm(t) =
(
etD
)
mn
fn(0) (6.123)

and notice the following relations:
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• negative eigenvalue λ ≤ 0: approach to equilibrium

• eigenvector with λ = 0: equilibrium state

• multiple eigenvalue λ = 0 (two states, which ’do not talk to each other’): no
ergodic system, usually not possible to be derived from ’usual’ Hamiltonians

Note, that the Master equation is more general than the Fokker-Planck equation. The
FP equation is in fact a tridiagonal Master equation.

6.6. Chapman Kolmogorov equation

We consider a probability distribution f(x, t) and a joint probability distribution f(x1, t1;x2, t2; . . . ),
e.g. the joint probability distribution for a particle-tracking experiment. We can perform
some reduction

f(x1, t1) =

ˆ
dx2f(x1, t1;x2, t2) , (6.124)

With the normalization condition:
ˆ

dx1 f(x1, t1) = 1 . (6.125)

the conditional probability distribution f(x1, t1|x2, t2) denotes the probability to find a
particle at position x2 at time t2 under the condition, that it has been or will be at
position x1 at time t1 with the formal definition given by

f(x1, t1)f(x1, t1|x2, t2) = f(x1, t1;x2, t2) . (6.126)

Combining equation (6.124) and (6.126) we obtain

ˆ
dx1 f(x1, t1)f(x1, t1|x2, t2) = f(x2, t2) . (6.127)

From the last equation we see, that the conditional probability ca be viewed as a tran-
sition probability. We are now able to reformulate the Markov assumption for times
t1 < t2 < t3

f(x1, t1;x2, t2;x3, t3) = f(x1, t1)f(x1, t1|x2, t2)f(x2, t2|x3, t3) , (6.128)

which states, that the state at time t3 only depends on the state at time t2 and not on
all previous states, here t1. Therefore, this factorization is possible. Markov processes
are defined by just two functions f(x, t) and f(x1, t1|x2, t2). If we integrate equation
(6.128) over x2 we obtain

f(x1, t1;x3, t3) = f(x1, t1)

ˆ
dx2 f(x1, t1|x2, t2)f(x2, t2|x3, t3) . (6.129)
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and using equation (6.126) we have derived the Chapman Kolmogorov equation

f(x1, t1|x3, t3) =

ˆ
dx2 f(x1, t1|x2, t2)f(x2, t2|x3, t3) , (6.130)

which states, that the transition from position x1 to x3 can be broken into two indepen-
dent processes.

Next, we derive the Master equation from the Chapman Kolmogorov equation. First,
we rewrite equation (6.127) with t2 = t1 + τ

f(x2, t1 + τ) =

ˆ
dx1 f(x1, t1)f(x1, t1|x2, t1 + τ) , (6.131)

Since we are interested in small time intervals τ we consider the time derivative of the
probability distribution

df(x2, t1)

dt1
=
f(x2, t1 + τ)− f(x2, t1)

τ
(6.132)

= Expanding in τ the second term in the integrand in (6.131), from definition (6.117)
we get

f(x1, t1|x2, t1 + τ) = δ(x1 − x2) + τW (x1, x2)− τ
ˆ

dxW (x1, x)δ(x1 − x2) , (6.133)

The last term is most easily understood as a constraint imposed by normalization
ˆ

dx2f(x1, t1|x2, t1 + τ) = 1 . (6.134)

since

1 =

ˆ
δ(x1 − x2)dx2 +

ˆ
dx2τW (x1, x2)−

ˆ
dx2τ

ˆ
dxW (x1, x)δ(x1 − x2)

= 1 +

ˆ
dx2τW (x1, x2)−

ˆ
dx2τW (x1, x2) (6.135)

An alternative way of (6.133) is

f(x1, t1|x2, t1 + τ) = δ(x1 − x2)

(
1− τ

ˆ
dxW (x1, x)

)
+ τW (x1, x2) , (6.136)

from which one can see, that the term in brackets can be interpreted as the probability
to rest at a position, which is unity minus the probability to move away.
W (x1, x2) is the transition rate to go from x1 to x2 thus

τ

ˆ
dxW (x1, x) (6.137)
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is just the probability to move away from position x1 and

1− τ
ˆ

dxW (x1, x) (6.138)

is the probability to stay. We can now insert the expansion (6.131) into equation (6.132)
and using (6.133)

∂f(x2, t1)

∂t1
=
f(x2, t+ τ)− f(x2, t1)

τ
(6.139)

=

ˆ
dx1 f(x1, t1)

(
W (x1, x2)−

ˆ
dxW (x1, x)δ(x1 − x2)

)
. (6.140)

We now perform the x1 integration in the second term and get

∂f(x2, t1)

∂t1
=

ˆ
dx1 f(x1, t1)W (x1, x2)−

ˆ
dx f(x2, t1)W (x2, x)

=

ˆ
dx1 f(x1, t1)W (x1, x2)−

ˆ
dx1 f(x2, t1)W (x2, x1)

=

ˆ
dx1 f(x1, t1)W (x1, x2)− f(x2, t1)W (x2, x1) . (6.141)

We have just derived a continuum Master equation in terms of the gain/loss formulation.
At this point we can derive the Fokker-Planck equation from the continuous Master
equation. To this end, we redefine the transition rates as

W (x1, x2) = W̃ (x1, x2 − x1) = W̃ (x1, ξ) (6.142)

as we are interested in small space steps ξ = x2 − x1. We rewrite equation (6.141)
changing the integration variable to ξ with t1 −→ t as

∂f(x2, t)

∂t
=

ˆ ∞
−∞

dξ
[
f(x2 − ξ, t)W̃ (x2 − ξ, ξ)− f(x2, t)W̃ (x2, ξ)

]
. (6.143)

We now expand this expression in powers of ξ, keeping the second argument of W̃ fixed
we get

∂f(x2, t)

∂t
=

ˆ ∞
−∞

dξ f(x2, t)W̃ (x2, ξ)−
ˆ

dξ ξ
∂

∂x2

f(x2, t)W̃ (x2, ξ)

+ 1
2

ˆ
dξξ2 ∂

2

∂x2
2

f(x2, t)W̃ (x2, ξ)−
ˆ

dξf(x2, t)W̃ (x2, ξ)

=−
ˆ

dξ ξ
∂

∂x2

f(x2, t)W̃ (x2, ξ) + 1
2

ˆ
dξξ2 ∂

2

∂x2
2

f(x2, t)W̃ (x2, ξ)

=− ∂

∂x2

ˆ
dξ ξf(x2, t)W̃ (x2, ξ) +

∂2

∂x2
2

ˆ
dξξ2f(x2, t)

W̃ (x2, ξ)

2
. (6.144)
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Thus we have obtained the Fokker-Planck equation

∂f(x, t)

∂t
= − ∂

∂x
f(x, t)h(x) +

∂2

∂x2
f(x, t)B(x) , (6.145)

with

h(x) =

ˆ
dξ ξW̃ (x, ξ) , B(x) = 1

2

ˆ
dξ ξ2W̃ (x, ξ) . (6.146)

Approaching from the Master equation, the functions h(x) and B(x) are respectively
the 1st and 2nd moment of the transition rates W̃ (x, ξ). In principle also higher order
spatial derivatives and higher moments would appear.
We remark that an expansion in the second argument of W̃

W̃ (x2, ξ) ' W̃ (x2, 0) + ξW̃ ′(x2) + 1
2
ξ2W̃ ′′(x2) + . . . (6.147)

trivially generates divergences in the moments h(x) and B(x).

6.7. Chemical kinetics

We consider the simplest chemical reaction A 
 B, with m molecules of substance A
and n molecules of substance B. The total number of molecules is N = m+ n constant
and the volume is denoted by V . The reaction rates or reaction coefficients are given by
k1 and k2. In the following we will deal with the ’mean-field’ description of a chemical
reaction. The concentrations are given by

CA =
m

V
, CB =

n

V
=

(N −m)

V
, (6.148)

C0 = CB + CA =
N

V
. (6.149)

The reaction rates are then given by

WA→B = V k1CA forward (6.150)

WB→A = V k2CB backward (6.151)

= V k2(C0 − CA) . (6.152)

The time derivative of the concentration is given by a Master equation

dCA
dt

= k2(C0 − CA)︸ ︷︷ ︸
gain

− k1CA︸ ︷︷ ︸
loss

= k2C0 − (k1 + k2)CA . (6.153)

In equilibrium we have ĊA = 0 and equation (6.153) then implies

k2CB = k1CA ⇒ Ceq
A = C0

k2

k1 + k2

(6.154)
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or in other words
CA
CB

∣∣∣∣
eq

=
k2

k1

= K . (6.155)

where K is the equilibrium constant. The formal solution for equation (6.153) is given
by

CA(t) = e−(k1+k2)tCA(0) +

ˆ t

0

dt′e−(k1+k2)(t−t′)k2C0 . (6.156)

Now we look at an autocatalytic reaction A + A 
 B + A. The reaction equation is
given by

dCA
dt

= k2CBCA − k1C
2
A = k2(C0 − CA)CA − k1C

2
A (6.157)

and in equilibrium ĊA = 0 yields

k2(C0 − Ceq
A ) = k1C

eq
A ⇒ Ceq

A = C0
k2

k1 + k2

. (6.158)

Thus, the equilibrium state is the same as in the simple reaction considered above, but
we will see, that its dynamics is totally different.

To see, why the dynamics of auto catalytic reactions are important we consider the
Lotka-Volterra model, that is used in biology to describe predator-pray models

A+X → 2X (k1) (6.159)

X + Y → 2Y (k2) (6.160)

Y → E (k3) (6.161)

Here A describes the food, X the pray and Y the predator and E describes the ’dead’-
state. In the following brackets will denote taking the concentration of X, Y,A. We
have

[Ẋ] = k1[A][X]− k2[X][Y ] (6.162)

[Ẏ ] = k2[Y ][X]− k3[Y ] . (6.163)

In this model, oscillation appear and the frequency depends on the food concentration
[A]. If we are interested in the question, under what conditions and at what time a
species dies out, we realize, that this question can not be answered sufficiently within
the framework of mean-field chemistry. Instead, fluctuations have to be taken into
account.

Another example invented in the context of chemical reaction (Belousov-Zhabotinsky-
Reaction) is the Bruesselator (Prigogine). Compared to the Lotka-Volterra model it
shows the additional feature of a limit cycle, meaning reactions described by the Brues-
selator show a dynamical complex state independent of the initial condition and [A].

A→ X (6.164)

2X + Y → 3X (6.165)

B +X → Y +D (6.166)

X → E (6.167)
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Now we turn back to the simple autocatalyitc reaction mentioned above. We will map
it to a Master equation. The backward reaction rate is given by

W [(m,n)→ (m+ 1, n− 1)] = k2
m

V

n

V
V (6.168)

and the forward reaction rate is

W [(m,n)→ (m− 1, n+ 1)] = k1
m

V

m

V
V . (6.169)

We assume that at a given time interval only one chemical reaction takes place. The
probability to have m molecules of sort A at a time t is denoted by Pm(t). The Master
equation then states

dPm
dt

= W [(m− 1, n+ 1)→ (m,n)]Pm−1 +W [(m,n)→ (m+ 1, n− 1)]Pm

+W [(m+ 1, n)→ (m,n+ 1)]Pm+1 +W [(m,n)→ (m− 1, n+ 1)]Pm
dPm
dt

=
k2

V
(m− 1)(n+ 1)Pm−1 −

k2

V
mnPm forward

+
k1

V
(m+ 1)2Pm+1 −

k1

V
m2Pm backward .

Rewriting the last equation and using the concentrations C = m/V and C0 = N/V we
obtain

dPm
dt

=
k2

V
(m− 1)(N + 1−m)Pm−1 −

[
k2

V
m(N −m)− k1

V
m2

]
Pm

+
k1

V
(m+ 1)2Pm+1

=k2V (C − 1

V
)(C0 +

1

V
− C)Pm−1 −

[
k2V C(C0 − C) + k1V C

2
]
Pm

+ k1V (C +
1

V
)2Pm+1 (6.170)

Note, that we keep terms in powers of V −1, because we are not only interested in the
thermal limit, but also in fluctuations. In order to transform this equation to a FP
equation, we introduce the continuum probability distribution ρ(C, t), which is defined
via

Pm+1 − Pm ' 2
∂ρ(m, t)

∂m
=

2

V

∂ρ(C, t)

∂C
, (6.171)

Pm+1 + Pm−1 − 2Pm '
1

V 2

∂2ρ

∂C2
. (6.172)

Using (6.171) and (6.172) we calculate

2Pm+1 − 2Pm = (Pm+1 + Pm−1 − 2Pm) + (Pm+1 − Pm−1)
1

V 2
ρ′′ +

2

V
ρ′
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⇒ Pm+1 =
1

2V 2
ρ′′ +

1

V
ρ′ + ρ (6.173)

Pm−1 =
1

2V 2
ρ′′ − 1

V
ρ′ + ρ (6.174)

Inserting (6.173) and (6.174) into (6.170) we calculate

∂ρ

∂t
=

[
k2

2V
(C − 1

V
)(C0 +

1

V
− C) +

k1

2V
(C +

1

V
)2

]
ρ′′

+

[
k1(C +

1

V
)2 − k2(C − 1

V
)(C0 +

1

V
− C)

]
ρ′

+

[
k2V (C − 1

V
)(C0 +

1

V
− C)− k2V C(C0 − C) + k1V (C +

1

V
)2 − k1V C

2

]
ρ

Omitting terms of orders of O(1/V 2), we obtain

∂ρ

∂t
=

1

2V

[
k2C(C0 − C) + k1C

2
]
ρ′′

+

[
−k2C(C0 − C) + k1C

2 +
2k1

V
C2 − k2

V
(2C − C0)

]
ρ′ (6.175)

+

[
−k2

V
+ k2(2C − C0) +

k1

V
+ 2k1C

]
ρ+O(1/V 2)

The final result can be written in the following way

∂ρ

∂t
= − ∂

∂C

[
k2C(C0 − C)− k1C

2
]
ρ+

∂2

∂C2

[
k2C(C0 − C) + k1C

2

2V

]
ρ . (6.176)

Note, that by similarity to the FP equation, we can be sure, that the probability distri-
bution is conserved, which basically means, that we did not do any discretizing mistakes.
By comparison to the FP equation

∂ρ

∂t
= − ∂

∂C
h(C)ρ(C, t) +

∂2

∂C2
B(C)ρ(C, t) (6.177)

we could in principle find h(C) and B(C). The stationary solution ρ̇ = 0 we discover for
the thermodynamic limit B(C) ' 1

V
→ 0, that there is no diffusion in the probability

space. I.e. there is no stochastics and the equilibrium solution is given by h(C) = 0 =
k2CACB − k1C

2
A. However, for B 6= 0 even the equilibrium is shifted.

Finally, we check, that (6.176) reproduces (6.175). The second addend of (6.176) is

1

2V

∂

∂C

[
(k2C0 − 2k2C + 2k1C) ρ+

(
k2C(C0 − C) + k1C

2
)
ρ′
]

=
1

2V
[(−2k2 + 2k1) ρ+ (k2C0 − 2k2C + 2k1C) ρ′ + (k2C0 − 2k2C + 2k1C) ρ′

+
(
k2C(C0 − C) + k1C

2
)
ρ′′
]

(6.178)
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while for the first addend of (6.176) we have

− [k2C0 − 2k1C − 2k1C] ρ−
[
k1C(C0 − C)− k1C(C0 − C)− k2C

2
]
ρ′ (6.179)

Adding both yields

∂ρ

∂t
= (k2C(C0 − C) + k1C

2)ρ′′ +

[
−k2C(C0 − C) + k1C

2 +
k2C0

V
− 2k2C

V
+

2k1C

V

]
ρ′

+

[
−k2C0 + 2k2C + 2k1C −

k2

V
+
k2

V

]
ρ (6.180)

which is the result stated in (6.175).
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Chapter 7
Kinetic Theory

7.1. BBGKY hierarchy

The BBGKY hierarchy named after Bogoliubov, Born, Green, Kirkwood and Yvon is a
set of coupled equations describing a many particle system, for which the Hamiltonian
equations of motions are valid. In the following this set of equations will be derived.

We consider a classical N -body problem for which the coordinates of the i-th particle
is given by the 6-dimensional vector ξi = (ri,pi) and the coordinates of the total system
is given by the 6N -dimensional vector ξ. The probability density of the 6N -dimensional
phase space is given by ρ(ξ1, ξ2, ξ3, . . . , ξN , t). The Hamilton equations of motion read

ṙi = ∇piHN , (7.1)

ṗi = −∇riHN , (7.2)

where HN denotes the Hamiltonian of the full N -particle system. As ρ is a conserved
quantity, it obeys the following continuity equation

∂ρ

∂t
+∇ξ · (ρξ̇) =

∂ρ

∂t
+ ξ̇ · ∇ξρ+ ρ∇ξ · ξ̇ = 0 . (7.3)

We note, that the last term cancels using (7.1) and (7.2) and the Schwarz’s theorem

∇ξ · ξ̇ =
N∑
i=1

(
∂ṙij
∂rij

+
∂ṗij
∂pij

)
=

N∑
i=1

∂2HN

∂rij∂p
i
j

− ∂2HN

∂pij∂r
i
j

= 0 (7.4)

thus (7.3) can be rewritten as

∂ρ

∂t
+

N∑
i=1

(
ṙi · ∇riρ+ ṗi · ∇piρ

)
=
∂ρ

∂t
+

N∑
i=1

(
∇piHN · ∇riρ−∇riHN · ∇piρ

)
= 0 , (7.5)
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where we again used (7.1) and (7.2). Introducing the Poisson bracket

{A,B} =
N∑
i=1

(
∇riA · ∇piB −∇piA · ∇riB

)
, (7.6)

we find a very comprehensive version of (7.5)

∂ρ

∂t
= {HN , ρ} . (7.7)

This equation is known as the Liouville equation and contains all microscopic informa-
tion.

We are interested in what happens, if we aim at describing the system by a reduced
number of particles. Thus, we introduce, the reduced l-particle distribution function
defined by

fl(ξ1, . . . , ξl, t) =

ˆ
ρ(ξ1, . . . , ξN , t)d

6ξl+1 . . . d
6ξN , (7.8)

where we integrated out (n − l) particles. For further derivations, we specify to a
case of N identical particles in an external potential Ψ(r) with pairwise interaction
Wij = W (ri, rj), the Hamiltonian reads

HN =
N∑
i=1

[
pi

2

2m
+ Ψ(ri)

]
+

∑
1≤i≤j≤N

Wij (7.9)

We integrate the Liouville equation over N − l coordinates and use (7.8) and (7.9)

∂fl
∂t

=
∂

∂t

ˆ
ρN(ξ1, . . . , ξN , t)d

6ξl+1 . . . d
6ξN

=

ˆ [{ N∑
i=1

(
pi

2

2m
+ Ψ(ri)

)
, ρN

}
+

{ ∑
1≤i≤j≤N

Wij, ρN

}]
dξl+1 . . . dξN . (7.10)

We notice the following useful relation

ˆ {
pi

2

2m
+ Ψ(ri), ρN

}
d3rid3pi

=

ˆ [
∇riΨ(ri) · ∇piρN −

pi

m
· ∇riρN

]
d3rid3pi

=

ˆ
∇riΨ(ri)ρNd3ri

∣∣∣∣pi=∞
pi=−∞

−
ˆ
pi
m
ρNd3pi

∣∣∣∣ri=∞
ri=−∞

= 0 (7.11)

because ρN is normalized and thus has to vanish at the boundary.
∗COMMENT: Nicer proof by myself
The phase space density is normalized, i.e.ˆ

ρ dV = 1 (7.12)
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Thus, we find using Liouville’s equation

∂

∂t

ˆ
ρ dV =

ˆ
∂ρ

∂t
dV =

ˆ
{H, ρ} dV = 0 . (7.13)

∗COMMENT over.
In a similar way, we find ˆ

{Wij, ρN} d6ξid
6ξj = 0 . (7.14)

Thus the potential energy contributes only for particles 1 to l and the interaction energy
Wij contributes only if at least one of the indices i, j is not contained in the set {l +
1, . . . , N}. We use this facts and make further use of the symmetry of the interaction
Wij = Wji. Then, eq. (7.10) becomes

∂fl
∂t

=

ˆ { l∑
i=1

(
pi

2

2m
+ Ψ(ri)

)
, ρN

}
+

{ ∑
1≤i≤j≤l

Wij, ρN

}
dξl+1 . . . dξN

+

ˆ l∑
i=1

N∑
j=l+1

∇riWij · ∇piρN dξl+1 . . . dξN

=

{
l∑

i=1

[
pi

2

2m
+ Ψ(ri)

]
+

∑
1≤i≤j≤l

Wij, fl

}

+ (N − l)
ˆ l∑

i=1

∇riWi,l+1 · ∇pifl+1dξl+1

For the last step, we used that ∇riWij does not depend on j, and thus we can perform
the sum over j. Also, we performed all the integrals over dξl+2 . . . dξN transforming ρN
into fl+1 by the definition of (7.8). We finally obtain

∂fl
∂t

= {Hl, fl}+ (N − l)
ˆ l∑

i=1

∇riWi,l+1 · ∇pifl+1dξl+1 . (7.15)

This is a set of coupled equations referred to as BBGKY hierarchy. Every equation for
fl includes fl+1. Thus, we are faced with the following problem – to calculate f1 we
need f2, but to calculate f2, we need f3 and so on. So far, we have not really made
any progress in solving the N -body problem. The strength of the BBGKY hierarchy
however, is that it can be approximated in reasonable ways, yielding the Vlasov or the
Boltzmann equation.

We consider the first equation for l = 1 and the corresponding Hamiltonian

H1 =
p2

2m
+ Ψ(r) .
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The first term of eq (7.15) for l = 1 is

{H1, f1} =∇rH1 · ∇pf1 −∇pH1 · ∇rf1

=−mF (r) · ∇pf1 −
p

m
· ∇rf1 , (7.16)

where we used ∇rΨ(r) = −mF as the definition of the potential and the force F
and switched to a less cumbersome notation (r1,p1) → (r,p) and (r2,p2) → (r′,p′).
Inserting (7.16) into (7.15), we obtain(

∂

∂t
+
p

m
· ∇r +mF (r) · ∇p

)
f1(r,p, t)

=(N − 1)

ˆ
∇rW (r, r′) · ∇pf2(r,p, r′,p′, t)d3r′d3p′ ≡

(
∂f1

∂t

)
coll

, (7.17)

where we defined the collision integral as a function of f1 and note that for large N , we
can approximate N − 1 ≈ N .

7.2. Balance equation from BBGKY equation

Before we continue to treat the N -body problem with the use of the BBGKY hierarchy,
we will use it to derive some of the balance equations of chapter from the microscopic
picture. To this end, we first make some preliminary considerations concerning relevant
densities following from one particle and two particle distribution functions.

ρ(r, t) = mN

ˆ
f1(r,p, t)d3p , (7.18)

where we assumed, that f is normalized, i.e.
´
f1d3rd3p = 1 and thus

´
ρ(r, t)d3r = Nm.

The velocity field

v(r, t) =
N

ρ(r, t)

ˆ
pf1(r,p, t)d3p , (7.19)

that reduces for a stationary flow with constant velocity

f1(r,p, t) =
1

V
δ(p− p0)

and constant density

ρ(r, t) = m
N

V

to

v(r, t) =
V

m

p0

V
=
p0

m
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as it should be.
The thermal or internal kinetic specific energy density

eK(r, t) =
N

ρ(r, t)

ˆ (
p2

2m
− 1

2
mv2(r, t)

)
f1(r,p, t)d3p

=
N

ρ(r, t)

ˆ
1

2m
(p−mv(r, t))2 f1(r,p, t)d3p , (7.20)

which is a measure for the width of the velocity distribution or in other words for the
strength of the internal momentum fluctuations.
The potential interaction energy density

eV (r, t) =
1

2

N

ρ(r, t)

ˆ
W (r, r′)f2(r, p, r′, p′, t)d3p d3r′d3p′ (7.21)

Next, we want to derive the continuity equation for the mass density ρ(r, t). To this
end, we integrate the first BBGKY equation (7.17) over d3p and use the approximation
N − 1 ≈ N ˆ

∂

∂t
f1d3p+

ˆ
p

m
· ∇rf1d3p+m

ˆ
F (r) · ∇pf1(r,p, t)d3p

=N

ˆ
∇rW (r, r′) · ∇pf2(r,p, r′,p′, t)d3r′d3p′d3p

and multiply by mN

∂

∂t
mN

ˆ
f1d3p+∇r ·N

ˆ
pf1d3p+m2N

ˆ
∇p · F (r)f1d3p

−mN2

ˆ
∇p · ∇rW (r, r′)f2d3r′d3p′d3p = 0

The last two terms vanish by an argument similar to the one used in the derivation
of (7.11) based on the fact, that f1 and f2 are normalized. Using relations (7.18) and
(7.19), we notice, that we have just derived the well known continuity equation

∂

∂t
ρ(r, t) +∇rρ(r, t)v(r, t) = 0 . (7.22)

To recover the conservation of momentum, we multiply eq. (7.17) by Np and integrate
over p, again using the approximation N ≈ N − 1. The equation for the ith component
reads

∂

∂t
N

ˆ
pif1(r,p, t)d3p+∇rj

N

m

ˆ
pipjf1d3p+mN

ˆ
piFj∇pjf1d3p

=N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p . (7.23)
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With the following side calculations

mN

ˆ
piFj∇pjf1d3p

=mN

ˆ
∇pj(piFjf1)d3p︸ ︷︷ ︸

=0

−mN
ˆ
f1Fj∇pjpi︸ ︷︷ ︸

δij

d3p (7.24)

=−mNFi
ˆ
f1d3p = −Fiρ(r, t)

we obtain from equation (7.23) by using (7.18) and (7.19) again

∂

∂t
(vi(r, t)ρ(r, t)) +∇rj

N

m

ˆ
pipjf1d3p

−N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p = Fiρ(r, t) (7.25)

In order to find a more comprehensive expression for (7.25) we multiply the continuity
equation by vi

vi
∂

∂t
ρ+ vi∇rjρvj = 0

vi
∂

∂t
ρ+∇rjviρvj − ρvj∇rjvi = 0

and subtract it from (7.25)

ρ
(
v̇i + vj∇rjvi

)
+
N

m
∇rj

ˆ (
pipj −m2vivj

)
f1d3p

−N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p = Fiρ(r, t) . (7.26)

We define the kinetic stress tensor

ΠK
ij (r, t) =

N

m

ˆ
(pipj −mvimvj) f1d3p (7.27)

=
N

m

ˆ
(pi −mvi)(pj −mvj)f1d3p (7.28)

and rewrite (7.26) using (7.28)

ρ
(
v̇i + vj∇rjvi

)
+∇rjΠ

K
ij (r, t)

−N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p = Fiρ(r, t) . (7.29)

Next we consider the term involving f2 in (7.29) and give it a name

Ωi = −N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p . (7.30)
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So we can shorten (7.29)

ρ
(
v̇i + vj∇rjvi

)
+∇rjΠ

K
ij (r, t) + Ωi = Fiρ(r, t) . (7.31)

Now, we take a closer look at Ωi (7.30)

Ωi =−N2

ˆ
pi∇rjW (r, r′)∇pjf2(r,p, r′,p′, t)d3r′d3p′d3p

=−N2

ˆ
∇pjpi∇rjW (r, r′)f2d3r′d3p′d3p︸ ︷︷ ︸

=0

+N2

ˆ
(∇pjpi)︸ ︷︷ ︸

δij

∇rjW (r, r′)f2d3r′d3p′d3p

Ωi =N2

ˆ
∇riW (r, r′)f2(r,p, r′,p′, t)d3r′d3p′d3p (7.32)

We define the spatial 2-point distribution function, that will be important later

g(r, r′, t) =

ˆ
f2(r,p, r′,p′, t)d3pd3p′ (7.33)

and find

Ωi =N2

ˆ
g(r, r′, t)∇riW (r, r′)d3r′

=N2

ˆ
g(r̃, r′, t)∇r̃iW (r̃, r′)δ(r̃ − r)d3r̃d3r′ (7.34)

For a central potential we have W (r, r′) = W (|r − r′|) and

∇r̃iW (|r̃ − r′|) = −∇r′i
W (|r̃ − r′|) .

Thus, we can rewrite eq (7.34) yielding

Ωi =
1

2
N2

ˆ
g(r̃, r′, t)δ(r̃ − r)(∇r̃i −∇r′i

)W (|r̃ − r′|)d3r̃d3r′ . (7.35)

In the second addend of (7.35) we switch r′ ↔ r̃ and since g(r̃, r′) = g(r′, r̃), we obtain

Ωi =
1

2
N2

ˆ
g(r̃, r′, t) [δ(r̃ − r)− δ(r′ − r)]∇r̃iW (|r̃ − r′|)d3r̃d3r′ . (7.36)

In the following we will use the subsequent relation

δ(r−r̃)−δ(r−r′) = −∇r ·
ˆ 1

0

dλ(r̃−r′)δ(r−λr̃−(1−λ)r′)δ(r−r′−λ(r̃−r′)) . (7.37)
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Proof:

−∇r ·
ˆ 1

0

dλ(r̃ − r′)δ(r − λr̃ − (1− λ)r′)δ(r − r′ − λ(r̃ − r′))

=−∇r ·
ˆ 1

0

dλ(r̃ − r′)
ˆ

d3p

(2π)3
eip·(r−r

′)−iλ(r̃−r′)·p

=−∇r · (r̃ − r′)
ˆ

d3p

(2π)3
eip·(r−r

′)

∣∣∣∣e−iλ(r̃−r′)·p

−i(r̃ − r′)

∣∣∣∣1
0

=−∇r · (r̃ − r′)
ˆ

d3p

(2π)3
eip·(r−r

′) 1− e−i(r̃−r′)·p

i(r̃ − r′) · p

=

ˆ
d3p

(2π)3

(
e−ip·(r̃−r) − eip·(r−r′)

)
= δ(r − r̃)− δ(r − r′)

Using this relation, we can write

Ωi(r, t) = −1

2
N2∇rj

ˆ 1

0

dλ

ˆ
g(r̃, r′, t)

(
r̃j − r′j

)
δ(r − r′ − λ(r̃ − r′))∇r̃iW (|r̃ − r′|)d3r̃d3r′

= −1

2
N2∇rj

ˆ
dλ

ˆ
g(r̃ + r′, r′, t)r̃jδ(r − r′ − λr̃)∇r̃iW (|r̃|)d3r̃d3r′ .

Using the following relation

ˆ
d3rf(r)δ(rλ− r0) =

ˆ
d3r̃

λ3
f(r̃/λ)δ(r̃ − r0) =

f(r0/λ)

λ3
(7.38)

and introducing the interaction component of the stress tensor

ΠW
ij = −1

2
N2

ˆ
dλ

ˆ
g(r + (1− λ)r̃, r − λr̃, t) r̃j r̃i

|r̃|
dW (|r̃|)

d|r̃|
dr̃ (7.39)

we finally obtain

Ωi = ∇rjΠ
W
ij . (7.40)

The stress tensor is decomposed into a kinetic and an interaction component according
to

Πij = ΠK
ij + ΠW

ij , (7.41)

where the kinetic contribution was already introduced in (7.28). Combining (7.29) with
(7.40) and (7.41), we finally obtain

ρ (v̇i + vj∇rivi) +∇rjΠij = Fiρ (7.42)

which is an exact relation.
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7.3. Vlasov equation

For an isotropic medium we have g(r1, r2, t) = g(|r1 − r2|, t) and the interaction
component of the stress tensor can be rewritten according to

ΠW
ij = −1

2
N2

ˆ
g(|r̃|, t) r̃j r̃i

|r̃|
dW (|r̃|)

d|r̃|
dr̃ (7.43)

The term is proportional to N2 and thus proportional to the density squared. In gases,
this quantity is related to collisions, in fluids it describes the coupling between g and
the pairing force −dW (r)

dr
, which vanishes for an ideal gas.

The kinetic contribution to Πij

ΠK
ij =

N

m

ˆ
(pi −mvi)(pj −mvj)f1d3p (7.44)

is proportional to N or to the density.
We consider the hydrostatic pressure

p(r, t) =
1

3

(
ΠK
ii + ΠW

ii

)
(7.45)

for an ideal gas, we have

p =
1

3

N

m

ˆ
(p−mv)2f1d3p =

2

3
ρ(r, t)eK(r, t) , (7.46)

where we used (7.18) and (7.20). The phase space distribution function in local equilib-
rium is given by the Maxwell distribution

f eq1 (r,p, t) = exp

{
− (p−mv)2

2mkBT (r, t)

}
(2πmkBT (r, t))−3/2 V −1 . (7.47)

Using (7.47) to evaluate the internal energy, we obtain

eK(r, t) =
3

2
kBT (r, t) . (7.48)

Inserting (7.48) into (7.46), we obtain nothing but the ideal gas equation.

p = ρkBT . (7.49)

We state without proof, that in a similar way to the derivations above material equations
e.g. viscosity or specific heat capacity can derived be from microscopic relation,

7.3. Vlasov equation

The BBGKY equations (7.15) are not exactly solvable, i.e. f1 can not be calculated.
Thus, we consider an approximative approach. We consider the first equation(

∂

∂t
+
pi
m
∇ri +mFi∇pi

)
f1(r,p, t) =

∂f1

∂t

∣∣∣∣
coll

(7.50)
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with
∂f1

∂t

∣∣∣∣
coll

= N

ˆ
(∇riW (r, r′))∇pif2(r,p, r′,p′, t)d3r′d3p′ (7.51)

the collision integral. The simplest, mean-field-like approximation is to assume, that
the probability density for two particle is nothing, but the product of two single particle
probability densities and thus factorizes according to

f2(r,p, r′,p′, t) = f1(r,p, t)f1(r′,p′, t) . (7.52)

This corresponds to a decoupling of the particles. Using (7.52) in eq (7.50), we obtain
for the collision integral

∂f1

∂t

∣∣∣∣
coll

= N

ˆ
(∇riW (r, r′))∇pif1(r,p, t)f1(r′,p′, t)d3r′d3p′

=
1

m

ˆ
(∇riW (r, r′))∇pif1(r,p, t)ρ(r′, t)d3r′

= (∇pif1(r,p, t))∇riΨ̄(r) , (7.53)

where we have used the definition of the mass density (7.18) in the second line and
introduced the mean field potential

Ψ̄(r) =
1

m

ˆ
W (r, r′)ρ(r′, t)d3r′ . (7.54)

Using eq (7.53) in (7.50) we obtain the Vlasov kinetic equation (1938)(
∂

∂t
+
pi
m
∇ri +

(
mFi(r)−∇riΨ̄(r)

)
∇pi

)
f1(r,p, t) = 0 . (7.55)

The particles feel only an average potential created by the other particles. This equation
in non-linear and reversible, i.e. for time and momentum inversion t→ −t, p→ −p , we
obtain the identical equation for f1(r,−p,−t). That means, we can describe irreversible
phenomena.

7.4. Boltzmann equation and irreversibility

In 1897 Planck stated, that the main question of theoretical physic is to derive the laws
for irreversible processes from the Hamilton equations with conservative forces. The
problem here is, that the Hamilton equations are invariant under the transformation
t → −t and p → −p for conservative forces. Planck proposed the ’radiation damping’
and wrote 7 papers on this issue between 1895 and 1901, from which important hints
concerning the development of quantum mechanics were obtained.
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7.4. Boltzmann equation and irreversibility

One central point of this discussion is the Boltzmann equation formulated by Boltz-
mann in 1872. The Boltzmann equation gives an expression for the collision integral
based on two-particle scattering. To derive it, we consider the two-body Hamiltonian

H2(p, r,p′, r′) =
p2

2m
+
p′2

2m
+W (|r − r′|) . (7.56)

We introduce the relative coordinates

∆r = r − r′ R =
1

2
(r + r′) (7.57)

∆p =
1

2
(p− p′) P = p+ p′ (7.58)

(7.59)

and rewrite the Hamiltonian (7.56)

H2 =
P 2

4m
+

∆p2

m
+W (|∆r|) . (7.60)

Thus, we have obtained the form of a free particle scattered by a central potential. The
scattering process is described by the process p,p′ → p̃, p̃′ and

P = P̃ (7.61)

assures to the conservation of momentum. We define the absolute value of the relative
velocity g = |v − v′| by

|∆p| = |∆p̃| ≡ m

2
g . (7.62)

The angular momentum vector (in laboratory frame) is conserved, because we face a
central potential. Its absolute value is given by

l = |∆p|b , (7.63)

where b is the distance between the particles trajectory at minus infinity and the parallel
line on which the scatterer is located, in this case this corresponds to the coordinate
center. If the particle initially moves from left to right, b is measured in the upward
direction.
DRAWING
Using classical mechanics, we can derive an equation for the scattering angle Θ. For
a derivation we refer to any introductory course on classical mechanics and will only
state the final result here. The scattering angle depends on the central potential W ,
the angular momentum l and the initial velocity. It is given by an integral over the
reciprocal radial distance to the scattering object, here the coordinate origin

Θ0 = π − 2

ˆ η∗

0

dη[
1− η2 − 4

mg2
W (b/η)

]1/2
(7.64)
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The limit of the integration η∗ is given by the condition

1− η∗2 − 4

mg2
W (bη∗) = 0 . (7.65)

This results from the fact, that the particle can not come closer to the coordinate origin
than a certain distance, which is limited by energy conservation, i.e. when the particle
has transferred all its kinetic and rotational energy into potential energy.

Now we count the number of collisions. All particles with momentum p′ in the volume
element d3r′ = 2πbdbgdt will be scattered in the time interval dt. The number of
scattering events is thus given by

C(p,p′ → p̃, p̃′) ∼ 2πgb db dt f1(p, r, t)f1(p′, r, t)d3pd3p′ . (7.66)

Here we used, that the scattering particles are uncorrelated and thus the two-particle
probability density factorizes into a product of one particle probability densities (molec-
ular chaos). The number of collisions of the reverse scattering process is given by

C(p̃, p̃′ → p,p′) ∼ 2πgbdbdtf1(p̃, r, t)f1(p̃′, r, t)d3p̃d3p̃′ . (7.67)

With the definition of the scattering cross section

σ(g,Θ0) sin Θ0dΘ0 = bdb , (7.68)

we obtain for the number of particles scattered into the phase space volume d3p per unit
time dt subtracted by the number of particles scattered out of this phase space volume
element

∆p =C(p,p′ → p̃, p̃′)− C(p,p′ → p̃, p̃′)

∼2πgσ(g,Θ0) sin Θ0dΘ0 dt

×
(
f1(p̃, r, t)f1(p̃′, r, t)d3p̃d3p̃′ − f1(p, r, t)f1(p′, r, t)d3pd3p′

)
Thus, we obtain for the rate of change of the phase space density f(p, r, t) per unit time
dt per unit volume d3p due to two-particle scattering the collision integral

∂f

∂t

∣∣∣∣
coll

=N

ˆ
d3p′
ˆ

dΘ0 sin Θ0dαgσ(Θ0, g)

×
(
f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)

)
, (7.69)

where p̃, p̃′ are functions of p and p′ determined by the momentum conservation (7.61)
and the conservation of the center of mass momentum (7.62).

7.5. Boltzmann H-theorem

We define the function

H(t) = N

ˆ ˆ
d3rd3pf1(r, p, t) ln f1(r, p, t) . (7.70)
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The Boltzmann H-theorem then states:

If f1 is governed by the Boltzmann equation, H will decrease in time.

We will now proof this statement. Thus, we take the time derivative of (7.70)

dH
dt

= N

¨
d3rd3p

∂f1

∂t
[ln f1 + 1] (7.71)

and consider the force free Boltzmann equation(
∂

∂t
+
pi
m
∇ri

)
f1(r,pt) =N

ˆ
d3p′
ˆ

dΘ0 sin Θ0

ˆ
dαgσ(Θ0, g) (7.72)

× [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

We solve (7.72) for the time derivative of f1 and insert it into (7.71)

H
dt

=−N
ˆ

d3rd3p
pi
m
∇rif1 [ln f1 + 1]︸ ︷︷ ︸

=0, normalization of f1

+N2

¨
d3rd3p

ˆ
d3p′
ˆ

dΩgσ [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

× [ln f1(r, p, t)− 1] (7.73)

The first term vanishes, because due to normalization f1 vanishes at the boundaries. We
swap p and p′

H
dt

=N2

¨
d3rd3p

ˆ
d3p′
ˆ

dΩgσ [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

× [ln f1(r, p′, t)− 1] (7.74)

and add (7.73) to (7.74) multiplying by 1
2

dH
dt

=
1

2
N2

ˆ
d3rd3pd3p′dΩgσ [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

× [ln f1(r, p′, t) + ln f1(r, p, t)− 2] . (7.75)

Now we swap p, p′ → p̃p̃′

dH
dt

=
1

2
N2

ˆ
d3rd3p̃d3p̃′dΩgσ [f1(p, r, t)f1(p′, r, t)− f1(p̃, r, t)f1(p̃′, r, t)]

× [ln f1(r, p̃′, t) + ln f1(r, p̃, t)− 2] .

For an elastic scattering event, where relations (7.61) and (7.62) hold, we can replace
the integrations d3p̃d3p̃′ by d3pd3p′

dH
dt

=
1

2
N2

ˆ
d3rd3pd3p′dΩgσ [f1(p, r, t)f1(p′, r, t)− f1(p̃, r, t)f1(p̃′, r, t)]

× [ln f1(r, p̃′, t) + ln f1(r, p̃, t)− 2] . (7.76)
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Now we add (7.75) and (7.76) and divide by 1
2
. We obtain

dH
dt

=
N2

4

ˆ
d3rd3pd3p′dΩσ [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

× ln
f1(p, r, t)f1(p′, r, t)

f1(p̃, r, t)f1(p̃′, r, t)
. (7.77)

Noting, that

(y − x) ln
x

y
≤ 0 ∀x, y ∈ R (7.78)

we realize, that we have proven the H-theorem

dH
dt

=
N2

4

ˆ
d3rd3pd3p′dΩσ [f1(p̃, r, t)f1(p̃′, r, t)− f1(p, r, t)f1(p′, r, t)]

× ln
f1(p, r, t)f1(p′, r, t)

f1(p̃, r, t)f1(p̃′, r, t)
≤ 0 . (7.79)

Boltzmann defined the function

S(t) = −kBH(t) (7.80)

as the entropy and we obtain the second law of thermodynamics from th H-theorem

dS(t)

dt
≥ 0 . (7.81)

Looking at eq. (7.77) we find a condition for zero entropy production, or zero loss of H

∂H
∂t

= 0⇔ f1(p̃)f1(p̃′) = f1(p)f1(p′) (7.82)

This corresponds to the condition of detailed balance (3.60) in chapter 3, which can be
seen by using (7.66) and (7.67).

7.6. Loschmidt argument (1876)

The Hamilton equations are time reversible, when at time t′ all velocities are reversed
vi → −vi, the system goes back to the past. For every trajectory in one direction there
is one in the other direction. From this one might follow, that there is no approach to
equilibrium.
Solution: Time reversal is not correctly described by the Boltzmann equation, because
it is only an approximate equation, that neglects the multi-body correlation of time
reversal.
Poincare Wiederkehr (1892) (Zermelo 1896): every insulated, finite, conservative sys-
tem comes back arbitrarily close to its initial state in a finite time τp. however, this
does not irreversibility as we observe it, because even for 10 atoms, the recurrence time

114



7.6. Loschmidt argument (1876)

is τp/τ0 ≈ 1016 and for N atoms it increases exponentially with the number of atoms
τp/τ0 ∼ CN .

Poincare Recurrence.
Look up in book and write down an example
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Fourier transform
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