Tracking Chirality in Photoelectron Circular Dichroism Abstract Photoelectron circular dichroism (PECD) originates from the interplay between a molecule's chiral nuclear scaffold and a circularly polarized ionizing laser field. It is one of the most sensitive characterization techniques for the chirality of molecules in the gas phase. However, due to the complexity of the observable, it is generally difficult to predict and track how and when the chirality of the molecule is imprinted onto the photoelectron. Here, we present simulations of PECD for single-photon ionization in a hydrogenic single-electron model with an artificial chiral potential. This framework allows us to systematically tune the system's chirality and characterize the emergence of PECD. To this end, we propose chirality measures for potentials and wave functions to establish a quantitative connection with the resulting anisotropy in the photelectron distribution. We show that these chirality measures are suitable indicators for chirality in our model, paving the way for tracking the evolution of chirality from the nuclear scaffold to the final observable.