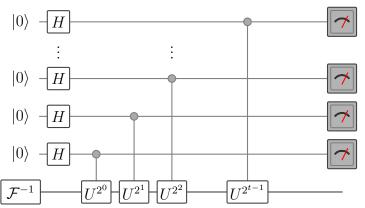
Freie Universität Berlin

Tutorials on Quantum Information Theory


Winter term 2020/21

Problem Sheet 10 Aspects of quantum algorithms and circuits

J. Eisert, J. Haferkamp, J. C. Magdalena De La Fuente

- 1. **Phase estimation.** Perhaps at the heart of the majority of modern quantum algorithms lies the *phase estimation algorithm*. The problem of phase estimation is the following: Given a unitary operator U and one of its eigenvectors $|u\rangle$ with eigenvalue $e^{2\pi i\phi}$, the phase estimation problem is to output the phase ϕ .
 - a) On the last sheet the definition and the circuit of the quantum Fourier transform was given. Show that the quantum Fourier transform is a unitary operator and draw the circuit implementing the inverse of the Fourier transform.

The phase estimation algorithm is implemented via the following quantum circuit:

The circuit constists of H, the Hadamard gate, controlled- U^{2^k} -gates, that apply the unitary operator U for 2^k times if the control qubit is $|1\rangle$, the inverse of the quantum Fourier transform \mathcal{F}^{-1} and a measurement in the computational basis at the very end. At the beginning, the first register comprising t qubits is initialised as $|0\rangle^{\otimes t}$ and the second register is prepared in the state $|u\rangle$. For simplicity we assume that ϕ can be written with exactly t bits, i.e. $\phi = \sum_{k=1}^t \phi_k 2^{-k}$ with $\phi_k \in \{0,1\}$.

- b) Show that the algorithm works.
- c) How many calls of the unitary operator are required in the algorithms?
- d) What is the computational complexity of a classical solution to the phase estimation problem?
- e) Sketch why phase estimation constitutes the core of Shor's algorithm.

2. Control gates.

- a) Show that the control-Z gate is invariant under swapping the two inputs with each other and the two outputs.
- b) The roles of the two inputs to the cNOT gate can be exchanged by applying the gate in another basis than the computational basis. Find a local unitary that applied to all inputs and outputs and turns a cNOT gate controlled by the first register into one controlled by the second register.

3. Probabilistic algorithm for Deutsch-Josza.

The Deutsch-Josza algorithm can determine whether a function $f: \{0,1\}^n \to \{0,1\}$ is balanced or constant by invoking the function (or more precisely a quantum implementation of the function) only a single time. In contrast, a deterministic classical algorithm needs to invoke the function exponentially $\mathcal{O}(2^n)$ often (at least in a worst-case scenario).

Assume instead that the goal is not to distinghuish these two cases with certainty, but only with a probability p > 1/2. How does the best classical algorithm for this problem perform?