Freie Universität Berlin
 Tutorials for Advanced Quantum Mechanics
 Wintersemester 2018/19
 Sheet 9

1. Bogoliubov Theory of weakly interacting Bose gas ($5+5=10$ points)

In lectures you utilized the following Bogoliubov transformation as a tool for studying the weakly interacting Bose gas:

$$
\begin{align*}
b_{k} & =u_{k} a_{k}+v_{k} a_{-k}^{\dagger}, \tag{1}\\
b_{k}^{\dagger} & =u_{k} a_{k}^{\dagger}+v_{k} a_{-k} . \tag{2}
\end{align*}
$$

In order to ensure that b_{k}, b_{k}^{\dagger} satisfy the Bose commutation relations, it is necessary that

$$
\begin{equation*}
u_{k}^{2}-v_{k}^{2}=1 . \tag{3}
\end{equation*}
$$

Additionally, we saw that in order to ensure that non-diagonal terms of the transformed Hamiltonian vanish, it is necessary to enforce

$$
\begin{equation*}
\left(\frac{k^{2}}{2 m}+n V_{k}\right) u_{k} v_{k}+\frac{n}{2} V_{k}\left(u_{k}^{2}+v_{k}^{2}\right)=0 \tag{4}
\end{equation*}
$$

(a) Derive explicitly the inverse of the Bogoliubov transformation in eqns. (1) and (2).
(b) Equations (3) and (4) specify a system of equations which can be used to solve for u_{k} and v_{k}. Verify explicitly that

$$
\begin{aligned}
u_{k}^{2} & =\frac{w_{k}+\left(\frac{k^{2}}{2 m}+n V_{k}\right)}{2 w_{k}} \\
v_{k}^{2} & =\frac{-w_{k}+\left(\frac{k^{2}}{2 m}+n V_{k}\right)}{2 w_{k}}=\frac{\left(n V_{k}\right)^{2}}{2 \omega_{k}\left(\omega_{k}+\frac{k^{2}}{2 m}+n V_{k}\right)}, \\
u_{k} v_{k} & =-\frac{n V_{k}}{2 \omega_{k}}
\end{aligned}
$$

where $w_{k}=\sqrt{\left(\frac{k^{2}}{2 m}+n V_{k}\right)^{2}-\left(n V_{k}\right)^{2}}$.
2. Details of BCS Theory $(4+4+4+4+4=20$ points)

In lectures you saw the following Hamiltonian as a starting point for developing the BCS theory of super-conductivity: $H=H_{0}+H_{1}$, where

$$
\begin{align*}
H_{0} & =\sum_{k, \sigma} \epsilon_{k} f_{k, \sigma}^{\dagger} f_{k, \sigma} \tag{5}\\
H_{1} & =-\frac{1}{2 V} \sum_{k, k^{\prime}} V_{k, k^{\prime}} f_{k, \sigma}^{\dagger} f_{-k,-\sigma}^{\dagger} f_{-k^{\prime},-\sigma} f_{k^{\prime}, \sigma} \tag{6}
\end{align*}
$$

with fermionic operator $f_{k, \sigma}^{\dagger}$ creating an electron with wave number k and spin σ.

As in previous settings, and according to a general theme, in order to diagonalize this Hamiltonian it is convenient to introduce new operators A_{k} and B_{k} via

$$
\begin{equation*}
f_{k, 1 / 2}=u_{k} A_{k}+v_{k} B_{k}^{\dagger}, \quad f_{-k,-1 / 2}=u_{k} B_{k}-v_{k} A_{k}^{\dagger} \tag{7}
\end{equation*}
$$

where u_{k} and v_{k} are real functions satisfying $u_{k}=u_{-k}, v_{k}=v_{-k}$ and $u_{k}^{2}+v_{k}^{2}=1$. In lectures it was claimed that the following Hamiltonian could then be obtained via the above transformation:

$$
\begin{align*}
H & =E_{0}+H_{0}^{\prime}+H_{1}^{\prime}+H_{2}^{\prime} \tag{8}\\
E_{0} & =2 \sum_{k} \epsilon_{k} v_{k}^{2}-\frac{1}{V} \sum_{k, k^{\prime}} V_{k, k^{\prime}} u_{k} v_{k} u_{k^{\prime}} v_{k^{\prime}} \tag{9}\\
H_{0}^{\prime} & =\sum_{k}\left(\epsilon_{k}\left(u_{k}^{2}-v_{k}^{2}\right)+\frac{2 u_{k} v_{k}}{V} \sum_{k^{\prime}} V_{k, k^{\prime}} u_{k^{\prime}} v_{k^{\prime}}\right) \times\left(A_{k}^{\dagger} A_{k}+B_{k}^{\dagger} B_{k}\right) \tag{10}\\
H_{1}^{\prime} & =\sum_{k}\left(2 \epsilon_{k} u_{k} v_{k}-\frac{\left(u_{k}^{2}-v_{k}^{2}\right)}{V} \sum_{k^{\prime}} V_{k, k^{\prime}} u_{k^{\prime}} v_{k^{\prime}}\right) \times\left(A_{k}^{\dagger} B_{k}^{\dagger}+A_{k} B_{k}\right) \tag{11}
\end{align*}
$$

where H_{2}^{\prime} contains higher order terms whose contribution to computation of the lowest energies is negligible. Again, and in accordance with a general strategy, in order to diagonalise the transformed Hamiltonian (8) we use the degrees of freedom we have introduced in eqs. (7) in order to set $H_{1}^{\prime}=0$. If we take

$$
\begin{align*}
& u_{k}=\frac{1}{\sqrt{2}}\left(1+\frac{\epsilon_{k}}{\sqrt{\Delta_{k}^{2}+\epsilon_{k}^{2}}}\right)^{1 / 2} \tag{12}\\
& v_{k}=\frac{1}{\sqrt{2}}\left(1-\frac{\epsilon_{k}}{\sqrt{\Delta_{k}^{2}+\epsilon_{k}^{2}}}\right)^{1 / 2} \tag{13}
\end{align*}
$$

then it was claimed in lectures that $H_{1}^{\prime}=0$ as long as Δ_{k} is the solution to the equation

$$
\begin{equation*}
\Delta_{k}=\frac{1}{2 V} \sum_{k^{\prime}} \frac{V_{k, k^{\prime}} \Delta_{k^{\prime}}}{\sqrt{\Delta_{k^{\prime}}^{2}+\epsilon_{k^{\prime}}^{2}}} \tag{14}
\end{equation*}
$$

(a) Prove that the operators A_{k} and B_{k} satisfy fermionic commutation relations, given the constraints on u_{k} and v_{k}.
(b) Use these commutation relations to derive explicitly the Hamiltonian (8), by substituting (7) into the original Hamiltonian (5).
(c) Given eqs. (12) and (13), prove explicitly that eq. (14) is the equation that Δ_{k} should satisfy in order to set $H_{1}^{\prime}=0$.
(d) The BCS ground state vector, as encountered during your lectures, is given by

$$
\begin{equation*}
\left|\psi_{\mathrm{BCS}}\right\rangle=\prod_{k}\left(u_{k}+v_{k} P_{k}^{\dagger}\right)|\varnothing\rangle, \tag{15}
\end{equation*}
$$

where $P_{k}^{\dagger}=f_{k, 1 / 2}^{\dagger} f_{-k,-1 / 2}^{\dagger}$ is known as a Cooper pair. Show that the amplitude

$$
\begin{equation*}
\left\langle\psi_{\mathrm{BCS}}\right| P_{k}^{\dagger}\left|\psi_{\mathrm{BCS}}\right\rangle \cdot\left\langle\psi_{\mathrm{BCS}}\right| P_{k}\left|\psi_{\mathrm{BCS}}\right\rangle \tag{16}
\end{equation*}
$$

is non-zero.
(e) Verify the commutator

$$
\begin{equation*}
\left[P_{k}, P_{\ell}^{\dagger}\right]=\delta_{k, \ell}\left[1-N_{p, 1 / 2}-N_{-\ell,-1 / 2}\right] . \tag{17}
\end{equation*}
$$

In this sense, Cooper pairs are not entirely equivalent to bosons, since they do not satisfy the usual bosonic CR.

