Springe direkt zu Inhalt

Work on Hamiltonian learning in Nature Communications

Learning a Hamiltonian from data.

Learning a Hamiltonian from data.

New work on Hamiltonian learning has been published in Nature Communications. The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. The key to solving these issues are precise means of characterizing analog quantum simulators. Here, we robustly estimate the free Hamiltonian parameters of bosonic excitations in a superconducting-qubit analog quantum simulator from measured time-series of single-mode canonical coordinates. We achieve high levels of precision in estimating the Hamiltonian parameters by exploiting a priori knowledge, making it robust against noise and state-preparation and measurement (SPAM) errors. Importantly, we are also able to obtain tomographic information about those SPAM errors from the same data, crucial for the experimental applicability of Hamiltonian learning in dynamical quantum-quench experiments. Our learning algorithm is scalable both in terms of the required amounts of data and post-processing. To achieve this, we develop a new super-resolution technique coined tensorESPRIT for frequency extraction from matrix time-series. The algorithm then combines tensorESPRIT with constrained manifold optimization for the eigenspace reconstruction with pre- and post-processing stages. For up to 14 coupled superconducting qubits on two Sycamore processors, we identify the Hamiltonian parameters -- verifying the implementation on one of them up to sub-MHz precision -- and construct a spatial implementation error map for a grid of 27 qubits. Our results constitute an accurate implementation of a dynamical quantum simulation that is characterized using a new diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.

This work has been covered by PhysOrg, Tagesspiegel, Spektrum der Wissenschaft, and many others.

News from Nov 10, 2024

1 / 100